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ABSTRACT

The thesis compares the analytical solution, two marine classification society design
rules, and two design guides against experimental results for predicting the failure modes
(general instability, axisymmetric buckling, and asymmetric collapse of the shell [lobar
buckling]) and failure pressures of ring-stiffened cylinders

The analytical solution is first summarized based on several sources. The design rules for
the classification societies and the design guidance from two sources are then presented with
brief explanations for each one. The design rules used are: American Bureau of Shipping (Rules
for Building and Classing Underwater Vehicles, Systems, and Hyperbaric Facilities, 1990) and
Germanischer Lloyd (Rules for Underwater Technology, 1988). The design guides used were
Society of Naval Architects and Marine Engineers (Submersible Vehicle Systems Design, 1990)
and Massachusetts Institute of Technology Course 13A Professional Summer Notes (MIT 13A
Submarine Design Trends, 2001).

The United States Navy Naval Sea Systems Command, Submarine Structural Integrity
Division supplied experimental data for four cylinders that covered the failure modes and
allowed comparison between experiment and design rules / guidance.

The comparison of experimental to predicted data found that the design codes and design
guides performed adequately in predicting axisymmetric yield and asymmetric buckling. The
performance of the design codes and guides in predicting failure by general instability was
unsatisfactory. For the experimental failures by general instability, the design codes and guides
predicted significantly higher failure pressures than those experimentally determined; resulting in
the design codes and guides actually predicting failure by axisymmetric yield in stead of general
instability. These inconsistencies in the predictions of failure mode and pressures for general
instability should be further explored to determine causes and corrections.

Thesis Supervisor: David V. Burke
Title: Senior Lecturer

Thesis Reader: Nicholas M. Patrikalakis
Title: Professor of Ocean and Mechanical Engineering
Kawasaki Professor of Engineering




Acknowledgements

I would like to thank Mr. William Will of the Naval Sea Systems Command, Submarine
Structural Integrity division for providing the experimental data for the thesis and providing
invaluable knowledge into the mechanics of cylindrical failures.

I would also like to thank Dr. David Burke for not only being a very supportive advisor

and providing the impetus for the thesis, but for giving much needed and timely guidance
throughout the analysis and writing processes.

Lastly I would like to thank Matt Graytek and Stephanie Norris for producing some

initial programming of the design rules. These were very important starting points for my
analyses.

This thesis is dedicated to:

My parents: William F. Price and Letitia M. Price and
My wife: Shelly L. Price




Table of Contents

Table of Contents
List of Figures
List of Tables
List of Appendices
Chapter 1: Introduction
1.1 Failure Types
1.2 Concept Exploration
1.3 Analysis Techniques
1.4 Design Rules and Guides Examined

Chapter 2: Overview of Ring-Stiffened Cylindrical Shells
2.1 Terminology
2.1.1 Material Properties
2.1.2 Geometry
2.1.2.1 Cylinder Geometry
2.1.2.2 Stiffener Geometry
2.2 Classification of Stiffeners
2.3 Stresses in Cylinders

Chapter 3: Analytic Solutions
3.1 History of Analyses
3.2 Current Theory
3.2.1 Axisymmetric Yield
3.2.2 Asymmetric Buckling (L.obar Buckling)
3.2.3 General Instability

Chapter 4: The Design Rules and Analysis Tools
4.1 American Bureau of Shipping (ABS)
4.1.1 Axisymmetric Yield
4.1.2 Asymmetric Buckling
4.1.3 General Instability
4.2 Germanischer Lloyd
4.2.1 Axisymmetric Yield
4.2.2 Asymmetric Buckling
4.2.3 General Instability

4.3 Society of Naval Architects and Marine Engineers (SNAME)

4.3.1 Axisymmetric Yield
4.3.2 Asymmetric Buckling
4.3.3 General Instability

4.4 MIT 13A Professional Summer Submarine Design Trends

4.4.1 Axisymmetric Yield
4.4.2 Asymmetric Buckling
4.4.3 General Instability

O R0 X I ~JAAN W

11
11
12
12
12
14

15

17
17
18
19
23
24

27
27
27
28
29
30
30
35
35
36
36
37
38
38
38
40
41




Chapter 5: Experimental Results
5.1 NAVSEA Test Cylinders
5.1.1 Cylinder 1.d
5.1.2 Cylinder 1.f
5.1.3 Cylinder 2.a
5.1.4 Cylinder 2.c
5.2 Calculation to Experiment Comparison

Chapter 6: Conclusions
6.1 Comparative Analysis Review
6.2 Agreements and Differences
6.3 Applications of the Models
6.4 Further Areas of Study

References

List of Figures

Figure 1: Cylinder and Stiffener Geometry

Figure 2: Basic Cylindrical Shell Stresses

Figure 3: Failure Pressure Ratio versus Slenderness Ratio
Figure 4: Coordinate System for a Cylindrical Shell
Figure 5: Test Cylinder 1.d Schematic

Figure 6: Test Cylinder 1.f Schematic

Figure 7: Test Cylinder 2.a Schematic

Figure 8: Test Cylinder 2.c Schematic

List of Tables

Table 1: Comparison of Design Rule Calculations to Experimental Results
Table 2: Cylinder 1.f Elastic General Instability Failure Pressures
Table 3: Cylinder 2.c Elastic General Instability Failure Pressures

List of Appendices

Appendix A: Codes for Test Cylinder 1.d
Appendix B: Codes for Test Cylinder 1.f
Appendix C: Codes for Test Cylinder 2.a
Appendix D: Codes for Test Cylinder 2.c

43
43
44
45
46
47
48

53
53
54
55
56

57

14
16
19
20
44
45
46
47

48
50
51

59
99
141
183




Chapter 1: Introduction

The widespread use of stiffened cylinders in the marine industry has generated many
studies into the stability and failure of these cylinders and methodology for failure prevention.
Of primary concern to entities involved with the use of manned submersible vehicles is the
design of ring-stiffened cylinders; this type of stiffened cylinder is used for significant portions
of the pressure hull. Over a hundred years of theoretical and experimental research has ledtoa
general understanding of the mechanics of failure for these cylinders. Based on this research,
marine Classification Societies, such as the American Bureau of Shipping (ABS), the American
Petroleum Institute (APT), NORSOK and Germanischer Lloyd (GL) have promulgated design‘
rules to provide guidelines on the design and building of stiffened cylinders for safe operation.
Other design and analysis theories and guidance are available in texts such as those published by

the Society of Naval Architects and Naval Engineers (SNAME).

1.1 Failure Types

There are three primary types of failure of ring-stiffened cylinders. They are
axisymmetric yielding (AY) of the shell between stiffeners, asymmetric buckling of the shell
between stiffeners (Lobar), and general instability of the shell and stiffeners (GI). Axisymmetric
yield generally occurs when the shell is relatively heavy and the frames are closely spaced.

Lobar buckling can occur when the shell is relatively light and the frames are strong and widely
spaced. General Instability can occur when the cylinder is relatively long, the shell is thin and
the frames are small. General Instability is very dependent upon eccentricities in the shell, which

tend to lower the cylinder’s resistance to the General Instability mode. [1]




As analyzed here General Instability is presumed to occur in the elastic region of the
stress — strain curve of the material. Cylinders also fail by inelastic General Instability, which
occurs at significantly lower pressures than that of elastic General Instability. Failure by this
mode is not addressed by the design rules. Other modes of failure also exist such as multi-wave
instability, which is a sub-type of General Instability. It can occur in both the elastic and
inelastic regions. Again the design rules do not address this failure mode. Several of the
classification societies address stiffener tripping, which is the rotation of a stiffener away from
perpendicular with the shell, however stiffener tripping is usually a precursor to general

instability and is not a separate major failure mode.

1.2 Concept Exploration

For this thesis, an emphasis was placed on exploring how the various design rules
predicted failure of cylinders that replicate modern submarine design (i.e. the shell was relatively
thick compared to the diameter of the cylinder). This was facilitated by experimental failure data
from the U.S. Navy’s Naval Sea Systems Command (NAVSEA) Submarine Structural Integrity
Division. The analysis was limited to ring-stiffened cylinders to remain consistent with the
primary concern of the thesis. The test cylinders that were chosen had failed in all three possible

modes, allowing for comparison of the design rules in all modes of failure.

1.3 Analysis Techniques

For the analyses, the design rules for the various classification societies and desi gn
guidance were programmed into MATHCAD™ for consistency of approach, ease of symbolic
representation, and quickness of computations. The analytical solution was also programmed

into MATHCAD™ for comparison. The experimental data from the four test cylinders were




then input into each computer code. The codes gave a failure pressure for each type of failure.
The lowest calculated pressure was then considered the failure pressure and the corresponding

mode was designated the failure mode. The failure modes and pressures were then compared

against the experimental results with emphasis placed on agreement between codes and

experiment on failure mode (first priority) and then failure pressure (second priority). If a

‘different failure mode was predicted than that experimentally found for a particular cylinder, an

analysis was performed for agreement between predicted failure pressures and also the closeness

of the failure mode pressures.

1.4 Design Rules and Guides Examined

There were two classification society design rules examined: The American Bureau of
Shipping (rules from Rules for Building and Classing Underwater Vehicles, Systems and
Hyperbaric Facilities, 1990 Edition) (reference 2) and Germanischer Lloyd (Rules for
Underwater Technology, 1988 Edition) (reference 3). Design guides included: The Society of
Naval Architects and Marine Engineers (SNAME) (Submersible Vehicle Systems Design, 1990)
(reference 4) and the Massachusetts Institute of Technology (MIT) Course 13A Professional
Summer (13A PS) Submarine Design Trends Course notes (reference 5) was also used. The 13A
PS is based upon the 1967 version of the SNAME publication Principles of Naval Architecture
(PNA) with some modifications determined by Harry Jackson (CAPT, USN Ret.). A third
classification society, the American Petroleum Institute (API) was planned to be used, however
the immediately available rules from API were not valid for the experimental data used.
However, API does have rules to cover the types of cylinders examined here.

Analytic solutions for the three failure modes were gathered from several sources. These

sources included Hydrostatically Loaded Structures: The Structural Mechanics, Analysis and
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Design of Powered Submersibles by William Nash (reference 6), Principles of Naval
Architecture, 1967 edition (reference 1), a David Taylor Model Basin technical paper by J.G.
Pulos and V.L. Salerno (reference 7), and several journal articles from the Transactions of The
Royal Institution of Naval Architects by S. Kendrick (reference 8) and C. T. F. Ross (reference
9).

In Chapter 2 a brief discussion on the terminology of ring-stiffened cylindrical shells is
produced along with a short derivation of the basic stresses in these cylinders. Chapter 3
contains the summary of analytic solutions used to predict failure (the solutions are not re-
derived), Chapter 4 has the summary of the design rules and guides from the various sources.
Chapter 5 describes the test cylinders and then compares the results from experiment to the

results predicted by the design rules and guides. Chapter 6 summarizes the results with

recommendations for further study.
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Chapter 2: Overview of Ring-Stiffened Cylindrical Shells

Ring-stiffened cylinders are the prevalent construction type in the mid-bodies of modern
submersibles. The stiffeners provide additional strength to the shell that is required for the
pressure differential between the external hydrostatic pressure and the internal, approximate

atmospheric pressure.[6]

2.1 Terminology

The various classification societies use slightly different terminology for the cylinder
geometries and properties. In the computerized design rules, the symbols used by each
classification society are generally used to avoid confusion between the published code and the
programs. All of the codes require computation of the moment of inertia (I) of the ring stiffener
and the moment of inertia (Ie) of an effective ring stiffener (the frame and some length of
attached shell). The formulas for I and I, came from [10].

The terminplogy can be divided into two categories: material properties and geometry.
All stresses and pressures are in pounds per square inch (psi), lengths are in inches (in), areas are

in square inches (in®) and moments of inertia are in inches to the fourth power (in%.

2.1.1 Material Properties

1) Modulus of Elasticity (E): The slope of the linear region of the stress-strain curve of a given
material. For all of the calculations a value of 3 X 107 psi (a common value for steel) was used.
2) Poisson’s Ratio (v or u): The ratio of lateral strain to axial strain in a material. For all

calculations, a value of 0.3 (a general figure for steel) was used.
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3) Yield Strength (o, or f or k): An arbitrary value for materials marking the onset of plastic
deformation of a material. This is usually considered the point of 0.2% permanent strain. This

value is of primary concern in the axisymmetric yield calculations. This parameter ranged in

value from 65,500 psi to 157,000 psi.

2.1.2 Geometry

2.1.2.1 Cylinder Geometry (see Figure 1)

1) Cylinder Length (L or Ly, or Lc): Overall length of the cylinder between supports. This varies
by cylinder and is of primary concern for General Instability calculations
2) Shell Mid-plane Radius (R): Radius from centerline of cylinder to the shell mid-plane.

3) Shell plate thickness (t or t,, or s or h): Thickness of the cylinder shell plating.

2.1.2.2 Stiffener Geometry (see Figure 1)

1) Length between Stiffeners (L or L¢ or Lg): Distance between centerlines of adjacent stiffeners.
This distance was assumed to be constant for each cylinder. This dimension is important for

both Axisymmetric Yield and Lobar Buckling.
2) Web Height (hw): Length of the web for ‘T’ stiffeners or the height of the stiffener for

rectangular stiffeners.

3) Web Thickness (t,,): Thickness of the web for “T” stiffeners or the thickness of the stiffener for

rectangular stiffeners.

4) Flange Breadth (bf): Width of the flange for ‘T’ stiffeners. This value is set to zero for

rectangular stiffeners.

5) Flange Depth (d): Thickness of the flange for “T” stiffeners. This value is set to zero for

rectangular stiffeners.

12




6) Stiffener Depth (H): The distance from the shell to the end of the stiffener. This is the
stiffener height for rectangular stiffeners and the web height plus the flange depth for ‘T’
stiffeners.

7) Faying Length (b): The distance of contact of the stiffener to the shell. It is equal to the flange
width for ‘T’ and rectangular stiffeners; if ‘I’-beam or wide-beam (WF) stiffeners are used, then
equal to the flange breadth in contact with the shell.

8) Effective Length of the Shell (L.): A length of shell to be considered as part of the combined
stiffener and shell used in the General Instability analyses. This; length is usually a fraction of
the stiffener spacing, but many times will be equal to the stiffener spacing.

9) Area of the stiffener (A): Cross-sectional area of the stiffener.

10) Effective Area of the stiffener (Aegr): Cross-sectional area of the combined stiffener and
effective length of shell or a modified area of the stiffener (A) based on the location of the
stiffener.

11) Moment of Inertia (I): Area moment of inertia of the dedicated stiffener, used by some codes
as part of the calculation for the effective moment of inertia.

12) Effective Moment of Inertia (If): Area moment of inertia for the combined stiffener and

shell, used for General Instability calculations.

13




Figure 1: Cylinder and Stiffener Geometry
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2.2 Classification of Stiffeners

There are several methods to classify stiffeners. Of importance to the analysis of
cylinders is the location of the stiffener: either internal or external to the cylinder shell. Both
types are used for cylinder construction; slight modifications to the design rules (concerning
effective areas and moments of inertia) are required based on the location. External stiffeners of
equal size to internal stiffeners require more material because of the greater circumferential

length but offer the advantage of freeing spacing within the cylinder for equipment / living space.

[5]
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Another classification of stiffeners are field (light / non-heavy) and heavy (king frame)
stiffeners. Heavy stiffeners are substantially larger than the field stiffeners and are used to
reduce the effective length of the cylinder for general instability concerns. Field stiffeners are of

uniform size, shape, and spacing. For the current analyses no heavy stiffeners were used.

2.3 Stresses in Cylinders

A brief discussion of stresses in cylindrical shells is required to set up the derivation of
the structural mechanics in support of the analytical solution. As a starting point, a cylinder can
be considered a thin-walled structure (shell) if the ratio of the mid-plane radius to the wall
thickness is greater than ten. This assumption allows the determination of the stresses by statics
alone.[10] All of the cylinders considered are treated as shells. A second assumption in the
analysis is to consider the hydrostatic pressure as constant across the cylinder.

Cylindrical shells, exposed to hydrostatic pressure, have two basic stresses imposed by

the pressure: hoop stress and axial stress. The equations for the stress are:

1) Hoop (circumferential) Stress: o, = —%IS (H
2) Axial Stress: o, = f:f )

Where p is the external pressure, R is the shell mean radius and t is the shell thickness. Figure 2
shows the derivation of these two equations.

The addition of ring stiffeners to the base shell complicates the hoop stress analysis by
introducing non-uniform deformation of the shell in the radial direction. There is also a beam-
column effect due to the pressure acting in the axial direction. These effects will be addressed in

Chapter 3.
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Figure 2: Basic Cylindrical Shell Stresses
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1) Axial Stress

Axial force on a vertical section of the cylinder must equal the axial stress times the

circumferential area.

i 2
Force balance: p.n.R = 2Rt a1

Which results in:

- _ PR
axial’ 2t

2) Circumferential (Hoop) Stress

The force on a transverse section of shell, with width b must equal the hoop stress times the shell

area.
Force balance: p2Rb = 2bt0p40p
Which results in:

P-R

Shoop * )
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Chapter 3: Analytic Solutions

Analytic solutions have been proposed and proven for the three major failure modes of
stiffened cylinders. This chapter briefly describes the theories and equations used in the

experimental analyses.

3.1 History of Analyses

The failure of cylinders exposed to external pressure has been studied for almost 150
years. The first attempts at understanding cylinder behavior was done by experiment and
empirical relationships in the 1850°s.[6] The first analytic solution for a non-reinforced cylinder
was presented by G. H. Bryan in 1888.[9] The first analysis of a reinforced cylinder appeared in
1913 by R. V. Southwell, followed a year later by a solution to the elastic buckling of a thin shell
proposed by von Mises.[6] In 1934 Widenburg proposed a solution for asymmetric buckling that
is independent of the number of lobes of failure.[6] This equation is the one used in the current
analysis. Solutions for axisymmetric yield were first put forward by von Sanden and Giinther in
1920.[9] Viterbo presented a modified version of Sanden and Giinther’s solution in 1930.[9]
Pulos and Salerno presented a solution that included the Sanden and Giinther solution, the
Viterbo modification and a term to account for the bending stress in the cylinder caused by the
axiél pressure.[9] The Pulos and Salerno solution is used in this thesis. For elastic general
instability, the first reported analysis was presénted by Tokugawa in 1929. In 1954 A. R. Bryant
developed a similar equation using a different methodology. [6]

Analytical work from the 1950’s onward has focused on obtaining solutions for different
boundary conditions and more fully reconciling the analytic predictions with experimental

results and to more fully understand the effects of initial imperfections in the cylinder’s material
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and geometric properties. With the advent of power digital computers and the use of finite

element analysis there has been great strides made in understanding the failure of cylinders.

3.2 Current Theory

For this thesis, analytic solutions were collected from several sources for the modes of
failure. A comprehensive theoretical solution that addresses all modes of failure is not presented.
Reference 6 provides a good summation of the currently used analytic solutions.

A first indicator of the failure mode of a cylinder is found by plotting the cylinder’s
slenderness ratio (1) against the ratio of the shell buckling pressure(pc) to the hoop pressure at

yield(py) (y).[1] The equations for these factors are given below.

L J—

. o 2

-2 (%) ®
N
p
%)

y=t @
y

Figure 3 shows the plot of y versus A. If the slenderness ratio is less than approximately 1.14 the
cylinder should fail by axisymmetric yield; if A is greater than 1.14 then the cylinder should fail
by lobar buckling. If the shell and stiffeners are not of sufficient size, the cylinder may fail by

general instability at a pressure less than that found in Figure 3.[1] By using two assumptions

(the material is steel with v = 0.3 and Ly/D >> t,/D) it can be shown that: [1]

y= pE &)

This is the buckling part of the curve in Figure 3.
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Figure 3: Failure Pressure Ratio versus Slenderness Ratio
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The treatment of boundary / end conditions of the cylinder is a vitally important factor in
the analytic solutions. The literature is full of discussion on what types of end condition to use,
with the choices ranging from full clamped ends to simply supported ends. The extreme cases
are hard to create in reality and therefore the experimental results tend to fall between the ranges
of predictions. Experiments have shown that partially clamped cylinders provide significantly
higher failure pressures than that predicted by mathematical models utilizing simply supported
ends.[8] For this thesis, no discrete boundary conditions were required to be stated for input into

the equations.

3.2.1 Axisymmetric Yield

As mentioned in section 3.1 axisymmetric yield has been studied since the 1920’s. The
solution summarized here was put forward by Pulos and Salerno in 1961. It is based on the
previous works of van Sunden and Giinther and Viterbo and includes a previously not included
“beam — column” effect due to the hydrostatic pressure acting in the axial direction of the

cylinder.[7] The governing differential equation is:
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Where:

E-t3

12-(1 ~ VZ)

D:=

D is the flexural rigidity of the shell

(6)

The term p—; represents the beam — column effect. It makes the solution to equation (6) a non-

Jinear function of pressure and was the term neglected in the earlier analyses of axisymmetric

yield. Figure 4 shows the coordinate system used in reference 7 to derive the governing

equation. X, @, and r are the axial, circumferential and axial coordinates respectfully with u, v,

and w being the corresponding displacements. [7]

Figure 4: Coordinate System for a Cylindrical Shell
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Following typical practice in the solution of non-homogeneous differential equations the
general solution of the governing equation can be written as the sum of the solution of the
homogeneous equation and a particular solution.[6] The solution to the homogeneous equation
produces four roots (Ai-A4). By analysis, placement of the origin of the coordinate system to take

advantage of symmetry, and trigonometric identities, the general solution can be given as:

PR’
Et

w= Bcosh A,x + F cosh 4, x - (1—%) (7

where B and F are arbitrary constants which can be found by applying boundary conditions to
the equation.[7]. After further mathematical substitutions several dimensionless parameters were
introduced into the solution to allow easier solving of the problem. Four of these parameters (Fi-
F4) were transcendental functions based on the geometry of the cylinder. These functions were

originally graphed to allow for a relatively quick solution to be found for a given cylinder.

Finally an equation for the failure pressure of a given cylinder was determined. This equation

along with the dimensionless parameters is given below.

cy.@ 5

3
\/Z + denoml — denom2

P =

Where:

0.91 .
denoml := Az'[Fzz + FyFy(1 - 2'11){ 2 2) + F42-(l -p+ uz).( 0.91 H

2
1-p
3 0.91
denom2 := (E)A(FZ - p-Fy 2]

1-nu
l-pu
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An iterative process is required for the general case where the parameter y is not zero. The

process begins with assuming that v is zero, finding the failure pressure then recalculating y and
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solving the equations for the failure pressure again. Usually only two to three iterations are

needed for satisfactory convergence of the failure pressure.[7]

3.2.2 Asymmetric Buckling (Lobar Buckling)

Asymmetric buckling is characterized by circumferential lobes between ring stiffeners.
As noted above this mode of failure will occur when the cylinder’s slenderness ratio is relatively
high. This can be further characterized by a relatively thin shell thickness and widely spaced
stiffeners.[1] R. von Mises first proposed a solution to the buckling of un-stiffened cylinders
under hydrostatic pressure in 1929. He assumed sinusoidal displacements in the axial and
circumferential directions to enable solving of a set of linearized partial differential equations
that represented the elastic action of the shell.[6] He eventually obtained the following equation

for the buckling pressure:

_ (Et 1 (%)4 2 (xR ’
el romme P e ) |
o]

The buckling pressure is dependent upon the number of circumferential lobes (n), which must be

an integer value. This fact requires an iterative process of varying n until the lowest pressure is
determined.

In 1933 Widenburg solved the above equation in way that was independent of n. From
test data the buckling pressures from the von Mises equation and the Widenburg approximation
differ by no more than 3.5%. [6]. Further investigation into the bucking of stiffened cylinders
determined that the Widenburg equation worked very well by replacing the length of the cylinder
by the length between stiffeners. Therefore the Widenburg equation (equation 10), shown

below, is the equation used in the current analyses.
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3.2.3 General Instability

General instability consists of the yielding of both the cylindrical shell and ring stiffeners.
A cylinder may be susceptible when the stiffeners are undersized when compared to the shell
thickness and the cylinder is relatively long.[6] General instability may occur in either the elastic
or inelastic stress region of a material. Elastic general instability is the mode covered by the
available literature and is addressed here. Inelastic general instability has been studied mainly by
government laboratories and most of the knowledge of this failure mode is classified material
and therefore unavailable to the present author. [11]

The first analysis of general instability was presented by T. Tokugawa in 1929. [6] His
methodology considered the failure as a combination of the failure of the ring stiffeners and shell
buckling with each taking place separately. [9] In the 1940’s S. Kendrick used a strain energy
methodology to determine the failure pressure. In 1953 A. R. Bryant used a simpler strain
energy method and determined an equation similar to both Kendrick’s and Tokugawa’s. [1, 9]

The Bryant equation is therefore used for this analysis and is shown below as equation 10.
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(11)

The first term can be considered the failure of the shell and the second term can be

considered the failure of a combined stiffener and an effective length of shell.[6] This effective

length has had much discussion in the literature over the decades. Bryant assumed the length to

be the spacing between the stiffeners, but others have proposed various corrections based on the

cylinder’s geometric and material properties.[5] For this thesis, the effective length used was the

stiffener spacing.

Similar to the von Mises buckling pressure determination, the number of circumferential

lobes (n) must be found that minimizes the failure pressure. The number of circumferential lobes

is usually between 2 and 4.[5] The factor A is the number of longitudinal lobes in the cylinder.
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Chapter 4: The Design Rules and Analysis Tools

The two classification societies’ design rules that were utilized were the American
Bureau of Shipping and the Germanischer Lloyd rules. These were chosen for their availability,
their different levels of simplification of equations, their coverage of the specific geometries of
the experimental cylinders, and their inclusion of all three failure modes. The Society of Naval
Architects and Marine Engineers Submersible Vehicle Systems Design and Principles of Naval
Architecture (PNA) were chosen for analysis as SNAME is the primary design society in the
United States and has comprehensive guidelines for cylinders. The MIT 13A Professional
Summer Submarine Design Trends notes were used because of the author’s familiarity and the

complete analysis of the failure modes.

4.1 American Bureau of Shipping (ABS)

The ABS design rules, as delineated in the Rules for Building and Classing Underwater
Vehicles, Systems and Hyperbaric Facilities (1990), give a brief and conservative approach for
determining the critical / collapse pressures for each failure mode. The ABS design rules do not

explicitly name the failure modes, but there are distinct equations for the three modes.

4.1.1 Axisymmetric Yield

This mode is designated the yield pressure at midbay and midplane of a cylinder.[2] The
formula accounts for the major parts of the analytic solution, but uses single value functions for
the shell parameters and does not explain the functions of each part of the equation. The rules do
account for the difference between internal and external frames by squaring the mid-plane radius

to stiffener radius ratio for external stiffeners. The base equation follows:
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Y 1-F (12)

Where

Internal Stiffeners or

R
o =
Ry External Stiffeners

N o= cosh(2-Q) — cos(2-Q)
~ sinh(2-Q) + sin(2-Q)

Gi=2 (sinh(Q)-cos(Q) + cosh(Q)-sin(Q))
‘ sinh(2-Q) + sin(2-Q)

Heo sinh(2Q) - sin(2-Q)
" sinh(2-Q) + sin(2Q)

4.1.2 Asymmetric Buckling

This is called the Von Mises buckling pressure for a cylinder. It is the Widenburg

approximation that is used by most of the classification societies.
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2.42-E-(~2—tE)
Pm = 3 (13)
( 2)4 L t 2
1-v — = 045 —
2:R 2-R

The ABS code then has a range of allowable pressures depending upon the ratio of P, to
Py. Below is the logic for the maximum allowable working pressure for inter-stiffener strength

(P.). Further safety factors are then applied to lower the allowable pressure in practice.

P P
P, = |— if—P—msl
2 y
P p
P (1——iJ if 1«2 <3
y P
m Yy
b ,
E-Py if 253
6 P,

4.1.3 General Instability

For the elastic general instability, the ABS code uses the Bryant equation with an

effective length not equal to one frame space. The effective length is given below.

1.5~\/R-t . . . .
L, = mi,{ 075 ] The equation for the failure pressure is broken into three parts, but the
. S

total is equivalent to the Bryant formula.

E E1,-Ay(n)
P (1) = Ay () + ————

R™L (14)

Where:

29




4

A
A](n) = 5 5
[Az(n) + %J-(nz + )\2)
Ay(n) = n2 -1
A= TR
L

4.2 Germanischer Lloyd

The design rules for Germanischer Lloyd are from Rules for Underwater Technology
(1988 edition). The rules address all three failure modes very thoroughly and flow charts are
provided to aide in programming the code for computer use. These rules also address out-of-

roundness up to a nominal value of 0.5% of the mid-plane shell radius by determining a reduced

allowable pressure.[3]

4.2.1 Axisymmetric Yield

The code for axisymmetric yield resembles the Pulos and Salerno methodology with
some additions to account for the transition of the material into the plastic range during yield.
The methodology consists of first guessing a pressure lower than the failure pressure (the test
cases used 1 psi as the starting point) then iterating through a series of equations to determine the
shell stresses. If the determined shell stress becomes greater than 0.8 of the yield strength of the
material, then a Secant Modulus of Elasticity (E;), a Tangent Modulus of Elasticity (E;) and a
plastic range Poisson’s Ratio (v, ) is calculated and used to determine the other calculation

factors. The determination of the integer m in equation (14) is described in the code below.

2
2
L e R R )
Pm = Paa™-0 T-m 4{ ol
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Where:

=S

HEITTTT
s ‘R
2-32-ES
p =
" R% 3 1-v.2
Vp

Must iterate on the integer m until trial is < trial2. By meeting this condition the

minimum failure pressure is found (with the minimum m).

trial2:= ’?-(m+ 1
H, = [1 + 114’[1{22 - 3-(1 - vpz)ﬂ
Hy:=[ (2- vp) ]
Hy:=[(1-2vp) = (2 vp) Ko ]

—(1—2~v o

p)'K

E
1__
. ES
Hy = ’
4(1 -V, )-KI
2 2
Cr&-vp G
CO =
N
Vp
2
Hy -Hy
Cl =1~
Hy
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2
H;"H,
C2I= 1 -
H,
H,H,-H
2773774
Cyo=| 14 ———
-H
Vp 1

C4 is not used for cylinders without heavy stiffeners.

C5 = a»Ll

2452-E
Past == —/——
2
Rz-\} 3-(] -v )

p = 1 psi (arbitrary low pressure)

critical pressure, elastic, calculation factor

This is the actual starting point of the iteration. A pressure (p) is guessed; the code then
calculates the failure pressure. If the failure pressure is greater than the guessed pressure, the
applied pressure is increased by a set amount. This continues until the two pressures, p and pm
are within a chosen delta of each other. This is essentially the method of Pulos and Salerno with

a simpler method for iterating on the presumed pressure.

- P

) Past
Cgi=5VT=G

=—~l1+G
C8 = C5-C6
Co:=CsCy
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4 cosh (C8)2 ] (Cg)z

1= C_5 cosh (CS)-sinh(Cg) cos (Cg)-sin(Cg)
Cs ' G

cosh (Cs)-sin(Cg) sinh (C8)~cos (Cg)
+
% Ce
Fa= cosh (Cg)-sinh(Cs) cos (C9)-sin(C9)
+
Ce %

cos(C9)-sin(C9) ) cosh (C8)~sinh(C8)

N R C6
37 1—v2 cosh(Cs)-sinh(Cg) N cos(C9)~sin(C9)

Ce &

cosh(Cs)-sin(C) sinh(C8)-cos(C9)

N G Ce
é.— | - V2 cosh (Cs)-sinh(CS) . cos(C9)~sin(C9)

Ce c;

The functions F1 through F4 are equivalent to those presented in the analytic solution.

-p-R
Oy = S
: 1 . 1
ox=%| 5+ C10C11Ty ox1= %0 5 ~ C10C11Fy
G¢ = 00'(1 - C10F2 + VC10C1 1F4) G(l)l = 0'0'(1 - C10F2 - VCIOCI 1F4)
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Gi = JO’XZ + 0'¢2 - O'x'0'¢

If the calculated stress is > 0.8k then the following equations are used to determine the
material properties in the elastic — plastic region. The code is somewhat circular, the assﬁmption
was made to determine the strain (g;) from the previously calculated stress then to find a new

stress level by the equation given in the code.

c = k~(.8 + .2~tanh(5-E<£l - 4))
k
=X 08+ 02atann[5Z _4
E k

lossoa(un(s£e-)]
ool

Es =

o | =
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4.2.2 Asymmetric Buckling

For asymmetric bucking the Germanischer Lloyd code uses a modified version of
equation 9. Therefore the dependence upon the number of lobes is not removed and should give

a better estimate of the buckling pressure. The equation is given below.

( ) E'S'Bn](n)
Pmp\n):=———""
R (16)
Where:
' 2
-2
n2 ) 52-(112 -1+ }\12)
—2 + 1 + 5
A 12-R2-(1 —v )
Bn](n) = ) 2
n -1+ le
-R
= XR
L

4.2.3 General Instability

For elastic general instability, the code uses the Bryant equation with the effective

moment of inertia based upon the effective length of shell as defined:
Letest =b + V2-R:s

Lo = |Lgtest if Letest <1 where L, is the frame spacing

L, otherwise

The base equation for general instability also uses a modified radius (Rg) which is the radius to
the centroid of the combined stiffener and effective length of shell. For this thesis no “heavy” or
“king frame” stiffeners were used, however the code allows for these stiffeners with several
more equations.

Pnia(n) = po(n) + P](n) (17)
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Where:

E'S'BnZ(n)
n) =
Po(n) =
(n2 - 1)-E-le
pi(m) = ——
R0 ‘L
A,
Bpo(n) =
2 2 2 2 2
(- 1e0sa2) (s 37)
L:= L3
m-R
Ay 1= ——
27y

4.3 Society of Naval Architects and Marine Engineers (SNAME)

The SNAME code was taken from Submersible Vehicle Systems Design (1990). SNAME
is not a classification society as ABS and Germanischer Lloyd, but it does provide many of the
professional and technical resource material for naval architects in the United States. The
current codes are revised versions of those found in the SNAME publication Principles of Naval
Architecture (1967 edition), reference 1. The code addresses all three modes of failure with the

least complex set of equations of those under current study.

4.3.1 Axisymmetric Yield

For axisymmetric yield, the methodology simplifies the analytic solution by using the
older theory of von Sanden and Giinther instead of the solution put forward by Pulos and Salerno
in reference 7. The methodology thus neglects the beam-column effect of the axial pressure.

This is justified by designing the shell to yield vice buckle.[1]
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t
G - —
YR
= 18
Py 0.85-B (18)
1+ H
1+8
Where:
tyt
B:=
Ar + tyt

o:-ofali- pz)f‘(—L—f—j-(&)— (Ej

2R

_ cosh (9) - cos(B)
N sinh(e) + sin(@)

11'N t2
pi=——
50 t | Attt

R

3'sinh(g)-cos(g) + cosh (g)sm(g)
Hew o 2 2 2 2

sinh(9) + sin(0)

4.3.2 Asymmetric Buckling

For Lobar buckling, the code uses the Widenburg approximation equation that is

independent of the number of failure lobes. This is the same as used by ABS.

(19)
1
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4.3.3 General Instability

For general instability, the code uses the unmodified Bryant equation; therefore the
length of shell used in the moment of inertia calculation is one stiffener spacing. The code

suggests that the critical value of n is between 2 and 4.

2
o Et mt ) (n - 1)-13-1e
Per{n) =77
R 2 2 3
(nz -1+ l}(nz + mz) RoLg
2 (20)

Where:

m-R

mi= —
Ly

4.4 MIT 13A Professional Summer Submarine Design Trends

The Professional Summer notes are a compilation of design theories from Harry Jackson
(CAPT, USN, Ret.) used to instruct the MIT course 13A students in the basics of submarine
design. The actual purpose of the code is to evaluate a proposed submarine design given depth
and material criteria; some modifications were required to provide the failure pressures. The
failure equations for lobar buckling and general instability are generally from reference 1,

however some small modifications have been made. A complete stress calculation is included

for axisymmetric yield.

4.4.1 Axisymmetric Yield

The majority of the modifications to the original code were made to allow calculation of
a failure pressure for this mode. The beginning code provided a required diving depth and
therefore a pressure to withstand. It then performed a von Mises stress analysis on the structure,

resulting with a shell stress. This shell stress (after modification by a safety factor) was then
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compared to the yield strength of the material for acceptability. The code was modified to iterate
on the pressure, with the failure pressure designated as the pressure at which the calculated stress
was equal to the yield stress (without any modifications by safety factors). There was no distinct
equation for the failure pressure. The following is the code used to determine osy, which is the

shell stress.

L
A+twtp Area ratio
1
4
3~(1 - vz)
=l =
(R'tp) Slenderness Parameter
_ cosh (9) - cos(@)
sinh(0) + sin(6) Deflection coefficient
2N 1 0.25 3
B:= " : ; JRtp Frame flexibility parameter
+ twtp 34(] L )
v
(1 - —) -B
re=~_2/ Frame deflection parameter
1+
sinh(g)-cos(g) + cosh (g)sm(g)
2 2 2 2
Hp =-2-

sinh(6) + sin(6) Bending effect (mem)

sinh(8) + sin(0)

’ 3 Jen(5)-eo( 3 5)
0.5 sinh{ — |-cos| — | — cosh{ — |-sin| —
Hg = _2'( : ZJ ' - - 2 2 Bending effect (bend)
1-v ,

. sinh(e) - sin(G)

= Bending efffect near frame
sinh(@) + sin(e) '

The following begins the von Mises stress analysis.
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-P-R -P-R
O¢dso = —t——-[l + r-(PIM + V-ng)] C¢si == —t— 1+ r-(HM - V'HE)]
p p
-P-R -P-R
Oxxso= ——(0.5+ TH) Oxxsi=——(0.5 - T-Hg)
tp tp
i 0.5 i 0.5
-P-R 3 -P-R 3
G¢dfoi=—t-—' I-T|1+v- ; ‘K C‘Mﬁ::—:——' I-T|1-v. -K
Pl 1-v Pl 1-v
i 0.5 [ 0.5
-P-R 3 -P-R 3
~ Oxxfo'= _t—- 05-T- 5 ‘K Oxxfii= t—- 05+T- 5 ‘K
Pl 1-v Pl l-v
Sédso
Godsi
Oxxso
Oxxsi
Osy = G1:=0Osy o9 = Osy, 03:=0gy, O4:=0sy_
Oddfo
Godfi
Oxxfo
Oxxfi
1 1
2

2

2 2 2 2
OSYM:=\0] - 0102+ 02 OSYF:=\03 — 0304+ 04

OSYM
ogy:=ma
OSYF

4.4.2 Asymmetric Buckling

The equation for lobar bucking is the same as that used by SNAME and ABS and the

analytic solution; it is the Widenburg approximation:
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IRNE
2.42E~(-§)
Pop:= 21)

(I—Jf— - 045 t—p)(l - V2)0‘75

D D

4.4.3 General Instability

For general instability, the Bryant equation is used with the effective length of shell given
by the following method:
Leff = Lo Fp + ty

Where

L.:=Lg -ty isdefined as the clear length between the mid-bay and the stiffener

_— cosh (n1-9)2 — cos (nz-G)z
B 6. cosh(nl-e)-sinh(nyﬁ) cos(nz-e)-sin(nz-e)
+

nj nz

nj = 0.5~\/1 -y np:=0.5+41+y

F, is the first transcendental equation determined by Pulos and Salerno. The original
methodology required the pressure as an input to first determine the 6 function (it is the same as
for axisymmetric yield) and then F; was found. To provide for a simpler method, a series of
pressures that encompassed the predicted range of failure were input into the above equations
and an average value of F; was chosen from the resultant values. The F, Va]ﬁes changed by
approximately + 0.05 for each test cylinder. The effective length was then used to calculate the

moment of inertia for the combined shell and stiffener. The number of lobes was set to be
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between 2 and 4; the failure pressure was then found without other modifications to the Bryant

formula.

= X [(“i)2 - 1:|'E'1cff
R [("i)z o mﬂ'[(“i):z ’ sz Ry

PGl = .

Where:

F]w
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Chapter 5: Experimental Results

The various Classification Societies’ design rules were tested against data collected from
experiments conducted by the U. S. Navy in support of submarine design. Each society’s design
rules were used to determine the failure pressure and failure mode of each of the test cylinders.
The resulting predictions were then compared to the experimental results. Of primary interest
was agreement between the design rule prediction and experiment on the mode of failure,

followed by the closeness of the predicted failure pressure to the actual collapse pressure.

5.1 NAVSEA Test Cylinders

The test data was provided by the Naval Sea Systems Command submarine structures
unit (SEA 05P2). Four test cylinders were selected that covered the range of examined failure
modes. The cylinder diameter to thickness ratios (D/t) fell between 112 to 198, modeling typical
submarine D/t ratios. Two of the cylinders had internal stiffeners while the other two cylinders
had external stifféners. All four test cylinders had built-up end stiffeners with a combination of
slightly different spacing and / or larger stiffener dimensions than the uniform field stiffeners.
These end stiffeners were designed to prevent shell yielding in the end bays due to increased
stress levels associated with the boundary conditions. It was estimated that without the end
stiffeners a 4-5% reduction in axisymmetric yielding pressure could occur. None of the end
stiffeners met the classification societies’ requirement for a “deep” stiffener. None of the design
rule codes allowed for these variable stiffeners, therefore the non-uniformities were disregarded

and the end stiffeners treated as field stiffeners. The four cylinders are described below.
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5.1.1 Cylinder 1.d

Cylinder 1.d was a machined cylindrical shell with rectangular external ring stiffeners.
The material was high strength steel with a yield strength of 80,000 psi. Figure 5 shows the
schematic of the cylinder. The boundary conditions consisted of one end being fully fixed; the
other end had all freedoms fixed except for axial displacement (these conditions conflict with the
design rules assumption of completely clamped ends). External hydrostatic pressure was applied
including axial line load to simulate load on the end plate. The experiment tested the ability of
the design rules to predict elastic shell bucking (Lobar buckling). The experimentally
determined collapse pressure was 633 psi with failure by asymmetric (Lobar) buckling.

Appendix A has the analysis of predicted failure for this cylinder.

Figure 5: Test Cylinder 1.d Schematic
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5.1.2 Cylinder 1.f

Cylinder 1.f was a cylindrical shell with internal tee stiffeners of welded construction.
The material was high strength steel with a yield strength of 98,500 psi. The boundary
conditions consisted of 4.0 inch steel plates attached with full fixity to the end of the adaptor ring
on the model. External hydrostatic pressure was applied. This test cylinder was used to predict
failure by elastic general instability. There was no experimental elastic collapse pressure;
therefore the critical pressure was calculated by two separate, reliable analysis programs with the
results being 4858 psi (with 3 waves) and 4953 psi (with 3 waves). The test cylinder actually
failed by inelastic general instability at a pressure of 2200 psi. Figure 6 shows the cylinder

dimensions and Appendix B has the analysis of predicted failure for this cylinder.

Figure 6: Test Cylinder 1.f Schematic
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5.1.3 Cylinder 2.a

Cylinder 2.a was a machined cylindrical shell with external tee stiffeners. The material
was high strength steel with a yield strength 65,500 psi. Figure 7 shows the schematic of the
cylinder. The boundary conditions consisted of end closures made of 3.0 inch steel plates
attached to the idealized adaptor ring with full fixity. External uniform hydrostatic pressure was
applied to the model. This cylinder was used by the Navy to predict end bay failure (shell
collapse influenced by end bay design). This is a specific example of axisymmetric buckling and
was used as the axisymmetric model for the classification society rules. The experimental
collapse pressure was found to be 921 psi by axisymmetric collapse in the second bay from the

adaptor ring. Appendix C has the analysis of predicted failure for this cylinder.

Figure 7: Test Cylinder 2.a Schematic
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5.1.4 Cylinder 2.c

Cylinder 2.c was a fabricated cylinder with internal ring stiffeners. The base material
was high strength steel with a yield strength of 157,000 psi. Figure 8 shows the schematic of the
cylinder. The shell was cold rolled and fabricated with a deliberate out-of-roundness
imperfection. The frames were built-up. The frame web material was base metal, and the frame
flanges were cold rolled. The boundary conditions consisted of one end being fully fixed with
the other end having all freedoms except axial displacement. External uniform hydrostatic
pressure with an axial end load to simulate end plate loading was applied. This test cylinder was
used by NAVSEA to predict the inelastic general instability failure mode and to model out-of-
roundness imperfections. In the current comparison the out-of-roundness was disregarded. The
collapse pressure was experimentally found to be 3640 psi in 2 circumferential waves in an
inelastic general instability mode. Appendix D has the analysis of predicted failure for this

cylinder.

Figure 8: Test Cylinder 2.c Schematic
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3.2 Calculation to Experiment Comparison

Table 1 shows the comparison of the classification societies’ design rules to the

experimental results. The table displays the calculated failure pressure and failure mode for each

éylinder and the percent difference from the experimental failure pressure (if the experimental

and calculated failure modes are the same).

Table 1: Comparison of Design Rule Calculations to Experimental Results

1.4 1.f 2.a 2.c
Pressure|Mode[Pressure|ModelPressure|ModelPressure Mode
NAVSEA 633 L 2200 iGI 921 AX 3640 iGI
EPERIMENT -— ' - —_— ' — '
Analytic 605 L 2141 AX 876 AX 4080 AX
Solution -4.6% v -5.1%
ABS 605 L 2039 AX 844 AX 4211 AX
-4.6% ' -8.8% '
PNA 605 L 1928 AX 815 AX 3864 AX
-4.6% -12.1% ' S
Germanischer 606 L 2931 AX 1030 AX 4567 AX
Lloyd -4.5% 12.4%
13A Professional 605 L 1994 AX 819 AX 3712 AX
Summer -4 .6% -11.6%
Key : L Asymmetric (Lobar) Buckling
AX Axisymmetric Yielding
GI General Instability
e/i elastic / inelastic

There is excellent agreement between the experimental data and the calculations for

cylinder 1.d. The Lobar buckling failure was expected as the slenderness ratio was 201 , several

magnitudes greater than the breakpoint of 1.14 between asymmetric and axisymmetric failure.

The agreement between the design rules and the analytic solution calculations was expected as

they all used the same formula to determine the lobar buckling pressure. The calculated failure

pressure was 4% below the experimental pressure. The higher experimental critical pressure was

attributable to the test cylinder being more fully clamped than theorized in the design rules.
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Cylinder 2.a also generated agreement between the experimental data and the design rule
calculations. The predicted failure mode of axisymmetric yield was confirmed by the
experiment. However there were some significant differences between the predicted collapse
pressure and the experimental failure pressure. All of the design rules, except for the
Germanischer Lloyd, predicted failure at a pressure lower than that experimentally found. The
Germanischer Lloyd calculation over estimated the failure pressure and was the furthest from the
experimental pressure with a pressure 11.8% over the experimental pressure. This failure mode
is the most dependent upon the yield strength of the material therefore a small variance between
the given yield strength and the actual yield strength of the test specimen may have contributed
to the differing pressures predicted by the design rules. All of the design rules use a simplified
version of the methodology presented by Pulos and Salerno [7}. The Germanischer Lloyd and
the modified Professional Summer calculations, perform an iterative operation to find the
pressure, very close to the analytic methodology. The ABS and PNA calculations use single
value equations substituted for the transcendental functions of the analytic solution.

Cylinder 1.f failed at 2200 psi experimentally in an inelastic general instability mode.
The experiment was done to test the ability of NAVSEA’s computer codes to predict elastic
general instability. A predicted failure pressure of 4858 psi was determined for the elastic
general instability mode. The design rule codes estimated the general instability failure pressure
very well. Table 2 compares the design rules and analytic solution general instability pressures
to the experimental failure pressure. The agreement between the design rules was expected as
they all use the Bryant equation (equation 10) to determine the failure pressure. The only
differences come from the variations in the effective length of the shell for the combined shell

and stiffener calculations and small variations in the radius used in the equation.
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Of further interest to cylinder 1.f was that the design rules predicted failure by
axisymmetric yielding at an average of 2206 psi.. As the cylinder actually failed by inelastic
general instability the design code predictions indicate that the two modes of failure are very
close together. This cylinder was very close to failure in multiple modes at approximately the
same pressure (i.e. an identical cylinder of the same dimensions and material may have failed by
axisymmetric yielding vice the general instability depending on the eccentricity of the cylinder
and other small defects). This multiple failure mode condition must be guarded against in real

designs, usually by applying different safety factors to the various modes. [1]

Table 2: Cylinderl.f Elastic General Instability Failure Pressures

DESIGN RULE FAILURE PRESSURE % FROM LOBES
(PSI) EXPERIMENT

Experiment 4858 —-——= 3
Analytic Solution 4496 -7.5 3
ABS 4496 ~-7.5 3
PNA 4496 -7.5 3
Germanischer Lloyd 4651 -4.3 3
13A PS 4460 -8.2 3

Cylinder 2.c failed at 3640 psi in an inelastic general instability mode with 2
circumferential waves. However the design rule calculations all predicted failure by
axisymmetric yielding at an average pressure of 4086 psi. For this cylinder the design rule codes
were not close in predicting the elastic general instability failure pressure. This large
overestimation of the failure pressure can be attributed to the assumption of perfect circularity in
the design codes, whereas the experimental model had a two-wave sinusoidal imperfection of
maximum height of + 0.105 inches. This deliberate out-of-roundness would significantly reduce
the resistance to buckling. Table 3 compares the design rules / analytic solution to the

experimental failure pressure.
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From Table 3, the axisymmetric failure pressures were higher than the actual failure
pressure but all were within 16% of the experimental result. This closeness between the failure
modes resembles the results for cylinder 1.f. Further study may be warranted to explore

connections between axisymmetric yield and inelastic general instability.

Table 3: Cylinder 2.c Elastic General Instability Failure Pressures

DESIGN RULE FAILURE PRESSURE % FROM LOBES
(PST) EXPERIMENT

Experiment ' 3640 -—= 2
Analytic Solution 8642 137.4 2
ABS 8642 137.4 2
PNA 8642 137.4 2
Germanischer Lloyd 9702 166.5 2
13A PS 8536 134.5 2
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Chapter 6: Conclusions

The classification society design rules studied are important tools for engineers and naval
architects designing and studying cylindrical structures subjected to external hydrostatic
pressure. The engineer must have confidence that the design code used will provide acceptable
(safe) calculations for his or her structure. This confidence can be assured by comparison of the
calculated failure pressure and mode to that found from experiments. This thesis attempted to
provide that comparison for several of the most used design rules along with a comparison of the

analytical solution upon which most the design rules are at least partly based.

6.1 Comparative Analysis Review

As discussed in Chapter 5, the design rules had mixed results in correctly iaredicting the
failure mo'de and failure préssure of the test cylinders. In general all of the design rules and the
analytic solution were in agreement for the specific geometries. For the test cases of failure by
axisymmetric yielding and lobar buckling, the calculated pressures were accurate when
compared against the experimental results. However for the two cylinders that experimentally
failed by general instability, all of the design codes predicted failure by axisymmetric yielding
vice the general instability. The design rules only account for elastic general instability which
will occur at a higher pressure than the inelastic generél instability. For cylinder 1.f the design
codes calculation of the elastic general instability ‘mode failure pressure was very accurate, but
for cylinder 2.c the calculated failure pressures were all greater than 100% over the experimental
pressure. The majority of the pressure differentials for 2.c can be attributed to the built-in non-

circularity in the test cylinder.
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6.2 Agreements and Differences

In this thesis there were thirty failure pressures calculated (five failures for each of four
test cylinders and five general instability pressures each for the two cylinders that failed by
general instability) with design rule / analytic solution agreement on 33% of the pressures. The
other twenty pressure calculations varied from over 30% to less than 1% different.

The pressure calculations that were in agreement were generated from the use of the same
equation and same dimensions for most of the asymmetric buckling and elastic general
instability calculations. For the asymmetric buckling predictions, ABS, PNA, and the MIT 13A
Professional Summer calculations use the same equation as the analytic solution. This equation
was independent of the number of circumferential lobes in the failed part of the shell. For the
general instability cases, the ABS and PNA calculations agreed with the analytic solution. These
three codes used the same effective length (L. = frame spacing) and the assumption that the
radius of the combined shell and stiffener was the mid-plane radius of the shell.

The difference between calculations can be accounted for individually: The
Germanischer Lloyd code for asymmetric buckling used an iterative process that was dependent
of the number of lobes in the failed cylinder;.however the failure pressure was still within a tenth
of a percent of the other calculations. The predictions for elastic general instability were also
generally close. The Germanischer Lloyd and MIT 13A Professional Summer codes used
different assumptions for L. than the other codés, which gave predicted failure pressures slightly
different than the base general instability equation (equation 10). The largest variations between
the codes were generated for the axisymmetric yield mode. All of the codes used simplified
variations the analytic solution developed by Pulos and Salerno. These variations in the shell

yielding pressure come about due to the different simplifications made in the codes.
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6.3 Applications of the Models

The various design rules studied are promulgated to ensure safe deéign of cylinders for
use under external pressure conditions. This safe operation requires an almost absolute certainty
that the design will not fail under the worst anticipated condition (many theories and practices
exist on risk based design and the use of safety factors). The comparison of the design rules to
an analytic solution, analysis tools (MIT 13A Professional Summer and SNAME), and to
experimental results allows a designer to have a good idea of how a particular cylinder design
would be evaluated by each entity. This comparison ability would be useful in judging the initial
feasibility of a design and also would be useful in applications where a design would be subject
to more than one classification society.

The comparisons in this thesis should in no way be used as a detailed design tool for the
subject cylinders. After an initial design is compared and judged to be adequate, much more
rigorous analyses must be used to ensure a safe design. These advanced analyses should include
finite element methodology and other tools that can look at locai stresses instead of generalized
stresses in the shell. These higher order analysis tools can account for material differences,
geometric eccentricities (out-of-roundness and other along the shell), varied spacing and sizes of
stiffeners, and actﬁal construction factors such as heat effected zones around welds, and
bulkhead effects. Another important area that is addressed by other parts of the design rules but
not studied here is that of shell penetrations. These discontinuities in the shell are very
susceptible to stress concentration and must be reinforced to prevent failure at pressures lower

than that predicted for a continuous shell.
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6.4 Further Areas of Study

There are several areas that require further research to completely understand the result of
the above analysis. The area most evident in need of more study is the failure of the cylinders by
inelastic general instability. While some work has been accomplished on this phenomenon, most
of the work is either classified by government entities or is empirical data. As part of the
research into the inelastic general instability should be a detailed analysis of interactions /
relationships with axisymmetric yield. As found from the experimental cylinders that failed by
inelastic general instability, the design codes and analytic solution predicted failure by
axisymmetric yield of the shell at pressures close to the actual failure pressures. These
comparisons suggest that at least the two modes are very close together and may have some
interaction.

There are many other classification societies that produce design rules for stiffened
cylinders and other geometries. These societies include the American Petroleum Institute (APD),
NORSOK and Det Norske Veritas (Norway), Lloyd’s Register (United Kingdom), Registro
Italiano Navale Group (RINA) (Italy) and several others. These additional design rules could be

compared against the existing test cylinders as well as all of the design rules should be compared

against more experimental data.

Finally, the base methodology can be expanded to include other geometries such as
spheres, hemi-spheres, cones and toroids. The classification societies address most of these
fogns which can be found as the end closures for most submersibles and other pressure vessels.
Tﬁése more complex geometries present more challenging analytic solutions and are in general

harder to manufacture. Experimental data is scarcer; therefore finite element models may be

needed to generate comparisons.
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Appendix A: Codes for Test Cylinder 1.d
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AMERICAN BUREAU OF SHIPPING

Rules for Building and Classing Underwater Vehicles,
Systems, and Hyperbaric Facilities

Definitions

kst := 1000psi

E:=3000ksi  Modulus of Elasticity
v:=03 Poisson's Ratio

Gy = 8000(si Yield strength

Shell Parameters

L :=4.266n Distance between stiffeners
L, =22488in  Distance between bulkheads

R = 8.007in Mean radius of shell

t = 0.081in Thickness of shell

R, =R+ % Outer radius of shell
D, =2R, Outer Diameter of shell
Ring Stiffeners

t, :=0.138n  thickness of web of ring stiffener

depth :=0.5%n height of ring stiffener

b:=t,, faying width of stiffener (from P&S for I beam stiffener)
bf := 0.0in breadth of ring stiffener

by:=bf —t,  breadth of ring stiffener minus the web thickness
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d := 0.0in ring stiffener flange thickness
L,:=L,-t, Unsupported spacing between stiffeners

L:= ma>‘(LS , Lb)

L = 4.266in

2 2
t,,~depth ™ + by-d . ) ) )
c =5 ~ first centroidal height of ring stiffener
t,,-depth + by-d

cyp = 0.285in

¢y :=depth — ¢, second centroidal height of ring stiffener

¢y = 0.285in
hi=c;-d distance from centroid of ring stiffener to nearest edge of flange
Ry:=R+.5t+c, radius to centroid of ring stiffener

R, = 8.332in

A= (tw~depth + bz'd) cross-sectional area of ring stiffener

Aq = 0.079in’

L= (é)-(bf«:f - bz-h3 + tw-c23) moment of inertia of ring stiffener about its centroidal axis

[=213x 10 Yint

Re:=R + .5t+depth  Radius to tip of the stiffener
Ry = 8.617in

Combined Plate and Ring Stiffener

{1.5-@
L. :=mi

o = 0751, ] effective length of shell plate
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L, = 1.208in

Ap =Lt area of effective plate

Agp =Ap + Ag area of plate and ring stiffener

H, := depth + t height of combined plate and ring stiffener
H, = 0.054ft

By:=L-t, plate length minus the web thickness

1

tHe + Bt + byd (2, - d) . . o
Clei=- neutral axis of combined plate and ring stiffener
tW'HC + B]l + db2

from outer fiber of plate (Rg)

¢jc = 0.101in
R.:=R-5t+c, radius to centroidal axis of combined ring stiffener and shell

R, = 8.067in

I '[L.c,j ~By(ege - 1)+ bE(H, - 01)} - (bF - 1) (H, - ¢ - d)3:|

W | —

e
moment of inertia of combined plate and shell

.4
le = 0.009in

General Equations
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6 =6.809

lo)
1}
o @

Q = 3.405

Noe cosh(2:Q) - cos(2-Q)
" sinh(2-Q) + sin(2:Q)

N =0.997

Ge 2. (sinh(Q)-cos(Q) + cosh (Q)-sin(Q))
a sinh(2-Q) + sin(2-Q)

G=-0.081

_ sinh(2Q) - sin(2-Q)
" sinh(2-Q) + sin(2Q)

H=0.998
Inter-Stiffener Strength (6.19.1)
1) Inter-stiffener strength equations

This equates to axisymmetric buckling

2
A= AS(%J Effective area of plate and stiffener (External stiffeners)
A= 0.073in2
A%
A.(l ] _j.G
2
F:=
2N-t-L
A+t 5
F=-0.027
t
Gy-E
Py = yield pressure at midbay and midplane of cylinder
1-F
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P, = 787.9psi

This corresponds to Lobar buckling

3
¢ 2
2.42 E-(ﬁ)
P = : von Mises buckling pressure for a cylinder
3 1
4
(R I P
2R 2.R
P, = 604.9psi

Maximum allowable working pressure for inter-stiffener strength

P P
PC = _m if _m <1
2
y
P P
Py 1-—2 | ir1<-2<3
2P, Py
P
3. y if mo,
6 P,
P
2 _0.768
Py
P. =302.4psi
paits =P8
P,its = 242psi
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2) longitudinal stress
Limiting pressure corresponding to the longitudinal stress at stiffeners reaching yield. No direct

correlation to major failure modes

Py = 732.7psi

P, :=P;.67 Maximum allowable working pressuré for longitudinal stress

P, = 490.88psi

b Overall Buckling Strength (6.19.5)

A= R
LC
n:=1
Ay(n) = n2 -1
4
A
Ain) = 2 2
(Az(n) + LJ (2112
E1,-Ay(n)

Et
Pp(m) = ‘R_'Al(n) + 3
R™-L
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ny = Minimiz{pn] ,n)
ny =3.109

n must be an integer
Noint = round (n2,0)
"int = 3

Mfirst = |M2iny 100 if nppp =1

Nyint = 1 otherwise

Mfirst = 2
M2first
N2int
N2prime =
P Nint + 1
Nint + 2
"Zprimel =3
pn]("ZprimeO>
pn]("Zprime])
Pn2=
pnl(anrimez)
pnl("Zprim%>
5.127x 103
1522x 100 |
Pn2 = 5 [P
1.974% 10
3.022x 103
Pp = mir(pnz)
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Py = 1522.3psi

Paol = P>

P, =761.131psi

aol =
Summary
Axisymmetric Buckling
P, = 787.9psi

Lobar Buckling

P, = 604.9psi

General Instability

p, = 1522.3psi

D)int = 3
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Germanischer Lloyd

1988 Edition

Chapter 2 - Submersibles

MPa := ]O6Pa ksi := 103psi
General Definitions

E := 3000(ksi

L;:==4266n  stiffener spacing

13:=22.484n length of cylinder between bulkheads or lines of support

s :=.081lin thickness of shell
R := 8.00%n radius to centerline of shell
v:i=03 Poisson's Ratio

k := 80-ksi minimum yield stress of material

Stiffener Dimensions

eg:=0.0in flange thickness
dg:=0.0in width of flange from web to edge of flange
by i=2-dg

d,, = 0.5%n Height of web

e, :=0.138n  web thickness

bi=e, width of stiffener ring in contact with shell

Ap=ep(e, +2df) +e,d,  cross-sectional area of stiffener ring
Ay =0079%in’
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- Hgigr=dw + ef

HStiff = 0.57in

2 2
ewHstigr + byer

1
Cl:z? ey Hepipr + by
w stiff T U2

¢y = 0.285in
¢2 = Hgiier = €1

¢y = 0.285in
hyi=cy—ef

hy = 0.285in

I = (%)[(ew + 2-df)-c13 - (2-df)-h23 + ew-c23:] Centroidal Moment of inertia of ring stiffener

I, =213x 10 3int
e:=cy+ .55 distance from stiffener centroid to center of shell

e = 0.325in

Effective Stiffener and Shell
Letest =b + \/ 2-R-s

Le = [Lletest

if Loest <Ly Effective length of shell (eqn 45a,b)

etest —

Ll otherwise

L, = 1.277in
A]-e2 Le-s3 . .
l I, = ——+ I + > Moment of Inertia of combined plate and shell
1
1+ L
L.-s

I, =692x 10 Yint
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Hgifre = Hegipr + 5 Total height of stiffener and plate
Hyifrc = 0.651in

dy:=s

bs|:=L, —e,

2 2
ewHgife + byeg + bsys(2Hypr - 5)
ew'Hstiffc + bz-ef + bsl-s

c -
lc- 5

Clc= 0.47in

2¢ = Hggiffe = C1c

¢y = 0.18lin
Ry =R - .55 +cy, radius of stiffener ring centroid including effect of L
R, = 8.148in
R2
A= A]-—2 Modified area of stiffener ring
RO
A= 0.076in2

e i=cp. + Ss

e} = 0.222in
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2.4 Asymmetric Buckling (Lobar but not named this)

n:=2 Initial guess

2
-2 2
n2 sz(n2 -1+ }‘1 )
— +1 +
2 2
?\1 12-R2-(1 -V )
Bpi(n) =
2 2
n - 1 + 5)\.1
E.S.Bnl(n)
n) =
Given
n>2

ng 1= Minimiz&(pnl ,n)

n,=10612  nmust be an integer
o

ngint = round(ng,O)
Ngint = 11
ngﬁrst = ngim-lOO if ngint =1
Ngint ~ 1 otherwise
Nofirst = 10
n
gfirst 10
_ Ngint 11
Noprime -~ o Noprime = 12
ngmt
+2 13

Noint
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n

p .
nl gprime,

(
l"’nl(ngprimel

(

(

Pn2 =
Pni “gprime2
Pn1 r'gprime3
Per = mir(an)

Por = 605.9psi

3.3.3 General Instability

L:= L3
n-R
Ay = —
27 L
)‘2 = 1.119
4
A
Bpa(n) = 5
( ) E'S'BnZ(n)
n) = ——u—
Po R
(n2 - 1)-E~Ie
py(n) = ;
R, 'Ll

ny = Minimizc(pn]a,n)



n, = 3247 n must be an integer
Noint = round(nz, O)
N2jnt = 3

Mint ~ !
Mint
Ny o=
2prime-
P int + 1

Nint + 2

Pnial Mupri
"la( 2primg 5.022x 10°

n .
Pnla( "2prime, 1.244% 10°

Pg2 = Pgo = psi
g : g
pnla(“Zprlmez> 1.452x 10°

2.187x 103

Pnla n2prime3

Pg = mi"(ng)

pPg = 1244psi

2.6 Symmetric Buckling (axisymmetric)
More Definitions

For Elastic-Plastic Region (Eqns are in the program)

E :=E Secant Modulus = Young's Modulus for elastic region
E :=E Tangent Modulus = Young's Modulus for elastic region
Vpi=V Poissons Ratio, elastic-plastic; = Poisson's ratio in elastic

shape factor
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1
a = 0.063~—

mm
Csi=a-L calculation factor for symmetric buckling
Cs = 6.809
2~52~E

critical pressure, elastic, calculation factor

Past =
2 2
R -\1 3~(] -V )

Past = 3716.211psi

Cs=al, calculation factor for symmetric buckling
Cs = 6.809
G:= -
Past

Co= 1 T=G

6" 5
G = 1 1+G

7" 2

4 COSh (C8)2 - COS(C9)2

Fy:=—-

I C5 cosh (Cs)-sinh(Cs) cos(C9)~sin(C9)

+
Ce G

cosh (Cs)-sin(Cg) . sinh(Cs)-cos (Cg)

_ G Ce
Fa:= cosh(CS)-sinh(Cs) cos (C9)~sin(C9)
Co ' G
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cos (C9)-sin(C9) . cosh (Cg)-sinh(Cs)

Ce

I G
3 - v2 cosh(CS)-sinh(Cg) . cos(C9)~sin(C9>

Ce

G

cosh (Cg) o>5in(C9) . sinh (Cg)-cos (C9)

Cs

cos(Co)sin(Cy)

R G
P2 cosh(Cg)sinh(Cy)

0.91
C =
11 2
1-v
-p-R
G = P

1
Ox = %‘(5 + €106 1'F4)

+

G¢ = (50'(1 - C10F2 + VCIOCI 1F4)

1
Ox1= 00'('2' -C106 1'F4)

Oy = —3.286x 108 Pa

o417=00(1 - CigFa = v:C1gCyrFy)

04) =—-6.651x 108Pa

q|a
=

b

.8k = 64ksi

G

Determination factor (if>.8k then must use E,, Eq, etc)
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[ 22
Gi.= GX +0’¢ —Gx'O'(p

o; = 83.538ksi
o= "Ko'cx
o = 96.5ksi
eyl
1= %
£y =3215% 10"
E
c:=k| .8+ .2-tanh 5"}:-8] -4
o = 79456psi
g = 5-(0.8+ 0.2.atanh| 5.2 - 4 )
E k
£=3215x 10 °
2
k E
E =~ 08+ 0.2 tanh| 5—¢ - 4))
€ k

E, = 24548 3 ksi

E, - E,(, - tanh(s.g.s _ 4))

E, = 1019.96&si
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C; = 0.068
2
Hy -Hy
Cz =11-
Hy
C‘Q = 0.049
2
H,"H,
C] =11-
Hy
2 2
Coe C1C2 - Vp C3
0- 1 )
Vp
Cp = 0.221
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oS

a]:: =

trial :=

trial = 1.068

iterate on m until trial is < trial2

2 2
. ol 1{ nm
Pm=PaaCo m 7 oL
. -

= 923.8psi .
Pm = 923.8psi failure pressure
p = 924.0psi iteration point — change pressure until p, = p
Summary

Axisymmetric Buckling
Py = 923.8psi

Lobar Buckling

Per = 605.9psi

General Instability

Pg = 1244psi
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Society of Naval Architects and Marine Engineers

Submersible Vehicle Systems Design (1990)
ksi := 1000psi
Input Section

Le:=4266n  Length between frames
Ly, == 22.488n Length between bulkheads

R := 8.007n Radius of cylinder to centerline of shell
t:=0.08lin shell thickness
Ry:=R + .5t radius to outside of shell

Ry = 8.047in

E:=30000ksi modulus of elasticity

oy = 80ksi minimum yield stress of material
pi=03 Poisson's ratio
Ring Stiffeners

t,,:=0.13&n thickness of web of ring stiffener

depth :=0.5%n total height of ring stiffener
bf := 0.0in breadth of ring stiffener
d := 0.0in ring stiffener flange thickness

b,:=bf —t,  breadth of ring stiffener minus the web thickness
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2 2
t,-depth™ + byd

¢;=.5 PR—— first centroidal height of ring stiffener
t\V. ept + bl

¢; = 0.285in
cyi=depth — ¢, second centroidal height of ring stiffener
¢y = 0.285in
hi=cy-d distance from centroid of ring stiffener to nearest edge of flange
h = 0.285in
R:=R+ .5t+c, radius to centroid of ring stiffener
R, = 8.332in
A= (tw-depth + b2~d) cross-sectional area of ring stiffener
A, = 0.079in”
L= (%)(bf -c13 - b2~h3 + tw-c23) moment of inertia of ring stiffener about its centroidal axis

L =213x 1072 in*

Combined Plate and Ring Stiffener

Ap =Lyt area of effective plate

Agp=Ap+ A area of plate and ring stiffener

H, :=depth +1 height of combined plate and ring stiffener
B i=Le-t, plate length minus the web thickness
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tyHo + Byt + byd-(2.H, - d) . _ o
Cle=- neutral axis of combined plate and ring stiffener
tW‘HC + Blt + db2

from outer fiber of plate (R0)

ch:O.IOIin

R, =R~ .5t+cq, radius to centroidal axis of combined ring stiffener and shell

R, = 8.067in

3

i
I = g{Lf»clc =By (g~ 1) + bE(H, - ep) - (bf - ty ) (He - 1 - d)3:|

moment of inertia of combined plate and shell
. 4
I, = 0.009n

Axisymmetric yielding

0 =6.809

__ cosh (9) - cos(e)
M= sinh(O) + sin(e)

N =0.997

1IN t2

50._'(_ Ar + iyt
R

B =1.126

B

81




- v 3o § cosh(%).sin(%)

sinh(8) + sin(6)

H=10.105
t
Gy‘ R
Py = 085- B
1+ H-:
1+ P
Py = 781.382psi
Lobar Buckling
_ s -
2
L
[ 24E (2-1{)
o 3 1
4 2
2
(]—p) —Li—0.45——t-—-
[ 2R 2R) ||
Py, = 604.9psi
General Instability
n-R
m::=—
Ly,
n:=1
2
o (n - l)-EIe

E-t
(n I e
Per1(m) -

4
2 +
" _1+7 An" +m

Given
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ny = Minimize(pcrl ,n)

n, = 3.109 n must be an integer

Nyint = round(nz, ())
Nint = 3

N first = | N2int 100 if npjpe =1

Noing = 1 otherwise

M7 first

N2int
Ny 1=
2prime
Nint *+ 1

N2int + 2
pcrl(n2prime0)
pcrl(anrime])
pcrl(anrimez)

pcrl(r’Zprime3

Per2 =

Per = min(pero)

Per = 1522.3psi
Summary
Axisymmetric Buckling
Py = 781.4psi
Lobar Buckling
Pp, = 604.9psi
General Instability

P = 1522.3psi

M) first = 2
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MIT 13A Professional Summer Submarine Design Trends

PROGRAM TO COMPUTE SUITABILITY OF SUBMARINE DESIGN PARAMETERS.
Ref: "Hull Material Trade Off Study", D Fox, Jan 94
ksi = 100Qpsi

Global Variable Inputs:

e=0.0in Eccentricity

Material:

oy = 80000si yield stress of material
E = 3000(ksi young’s modululs
v=03 poisson’s ratio
Geometry:

R = 8.00%n shell radius
D=2R shell diameter

Lf = 4.266n frame spacing
Ls=22.488n  bulkhead spacing
tp = 0.081in shell thickness

tr = 0.0in flange tickness
wr = 0.0in flange width

ty = 0.138n web thickness

hy = 0.5%n web height
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Compute areas:

t .
Ry:=R + —  Frame Radius
2.

R; = 8.047in
Ag =ty W Frame flange, web area
Ay =ty hy

A:=Ar+A,, Frame Area= Flange + Web

A= 0.079in2
PART 1 SHELL YIELDING
Von Sanden and Gunther (1952)

PNA Section 8.4

i t\’V.tp
At tytp Area ratio
B=0.124
1
4
2
3\1 -
0 :=Ls (—\;)-
(Rtp) Slenderness Parameter
0 =6.809
N cosh(G) - cos(e)
sinh(6) + sin(6) Deflection coefficient
N | 0.25 ; o .
= . JRetp Frame flexibility parameter
A+ tyty ( )
3\l -v
B=1126
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L)

m—_— Frame deflection parameter
1+ 8
I'=0341
sinh(%)‘cos(%) + cosh(%)sin(%)
Hp =2 - -
sinh(6) + sin(6) Bending effect (mem)
Hp = 0.081

0.5 sinh| — [-cos| — | - cosh| — |-sin| —
HE= —2'( : 2] ' - : : 2 Bending effect (bend)
l-v

sinh(0) + sin(0)
HE = 0.085

_ sinh(e) - sin(e)

K sinh(@) + sin(@)

Bending efffect near frame

Perl = fy“"—’y
Py« 1 psi

'P1 « 1000 psi
P2 « 2000 psi

delta ¢ 5 psi
limit « 1 psi
conv ¢ 1 psi
j<0
while j <20
for ie0.2
—Pi-R
O phso € Tv[l +THM + v-HE!]

PR
O opei ¢ ——%—[I +THM - vHE]
P

~P.R

S xis0 & ——105+ T'HE/
tp
-P.R
Cxsi¢ —— 105 -T"Hp
p

—Pi-R 3 05
Cgpfo &« —— |1 -T {1+ v ‘K
tp 1—\!2
—Pi-R 3 05
opfic- ——|1-T- l—v'[ ) ‘K
tp 2
1-v




D'Sy(—

S pifi
O xdo

S xxfi

G| < Oy,
S2¢ Osy
O3 Osy,

C4¢ Oy,

1

2 N2
USYM<—(01 —61-62+02)
1

2 2 2
D’SYF(-—(GB —c3ﬂc4+c4>

S SYM
O Sy < max
G SYF

stxessi €« T SY

tesi.i «— !fy - osy!

tes
shel ¢«

convy

test.l

conv

break if st.ressl - fy < limit

dav <

l:'0 «— P1 if shel-dav > 0

}:’2 «— P1 if shel-dav <0

VP, =P
2 a
P1<—P0+—
je—3+1
Py

—
Outo conv

out, « j-1

1

out
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801.682
Perl = 14

Pcrit -= Pcrlo' Ipsi

Perit = 801.7psi

PART 2 LOBAR BUCKLING |
Windenberg Approx of Von Mises (1933)
Assumes n lobes = Pi*D/L

Collapse pressure:

P.ig = 604.9psi

PART 3 GENERAL INSTABILITY
Corrected Bryant Formula (1954) for better model test correlation
Pressure loading is:
P:=p-g-DySFyi
P = 6697.9%si
Compute effective frame spacing:
y =1.802

Compute clear length:
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Le=1Lf -ty

nj = 0.5-\/ -y

ny = 0.448i
Web thickness:
ny:=051+y
ny = 0.837
Er 4 cosh(n1~9)2 - cos(n2-9)2
b= 6 ‘ cosh (nl-e)-sinh(nl-ﬂ) cos(nZ'G)‘sin(nge)
nj * ny
F] =023

must be less
than 1.00
F1 is almost a linear decreasing function for pressures from 1 to 2000 psi with an average value

0f 0.27. This will be used in the following analysis as the pressure is the unknown and therefore

the above equations cannot be directly used.

Fj:=027
Lefr := Lo Fp + ty Effective shell plate length:
Legr = 1.253in

Theoretical critical lobe number values are:

2
n:=|3 Circumferential Lobes
4

Acff = Lefrtp Effective plate area
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Acfr = O‘IOIin2

m=n~  Longitudinal Lobes
L
m=1.119
hy + tf hy + tp
Ag - A
( 5 ) f ( > eff
Yna=

Aeff + Ay + Af

Yna = —0.183in
Uses Paralle] Axis Theorm: Icor =1+ Ad2

Moments of inertia for plate,flange, web:

3
L Leff"p
P77 12

3

tyw-hy
==
L
=

tp + hy 2
Ipcor :=1Ip + Aefr > * ¥Yna

hyeor=lw + A\w‘()’na)2

2
tr + hyy
Ifcor :=1If + Af‘( > - Ynaj

Total;

Frame-plate neutral axis (ref web centre+ toward

flange):
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Ieff = Ipcor + hweor + Ifcor

. 4
Iefr = 0.007in

The critical Elastic General Instability pressure is:

[

Min Pressure:

5.035% 10° 5
PGl = 1.278x 10° | PSi no=|3
4

1516x 10°

PeG = min(PeG))

PGl = 1278.1psi
Summary
Axisymmetric Buckling
Perit = 801 psi
Lobar Buckling
P.Lp = 604.9psi
General Instability

Pcgr = 1278.1psi

91




Analytic Solution
Definitions

ksi = 6.894757106Pa

E:=3000ksi Modulus of Elasticity

R := 8.007n Radius of cylinder to centerline of shell
D:=2R Diameter of cylinder

oy = 80ksi Yield strength

L:=4.266n Length of supported cylinder

Ly, == 22.488n Distance between bulkheads

=23 Poison's ratio for Fe/Steel
t:=0.081in Shell thickness
Ring Stiffeners

t,,=0.138n  thickness of web of ring stiffener

H:=0.57n height of ring stiffener
b=t faying width of stiffener (from P&S for I beam stiffener)
bf := 0.0in breadth of ring stiffener

by:=bf -t,,  breadth of ring stiffener minus the web thickness

d :=0.0in ring stiffener flange thickness

Lpnash =L - bf distance from flange edges
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tH + byd’

cp=25 T first centroidal height of ring stiffener
¢} =0.285in
¢y =H-¢; second centroidal height of ring stiffener
¢y = 0.285in
h:=c;-d distancé from centroid of ring stiffener to nearest edge of flange
h = 0.285in
R:=R+ .5t+c, radius to centroid of ring stiffener
R, =8.332in
A= (tW-H + bz-d) cross-sectional area of ring stiffener
A, = 0.079in"
L= (%)-(bf@f - bz-h3 + tw-c23) moment of inertia of ring stiffener about its centroidal axis

[ =213x 10 Yin®

Acgr= Arv[%) effective area of stiffener eqn [24a] from P&S

.2
Aeff = 0.076in

o= /?;ff ratio of effective frame area to shell area eqn [62] P&S
a = 0.21‘9

B = % ratio of faying width to frame spacing eqn [62] P&S
B =0.032
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Combined Plate and Ring Stiffener

Ap =Lt area of effective plate

Agp =Ap+ A area of plate and ring stiffener

H, :=H+1 height of combined plate and ring stiffener
H, = 0.054ft

B;:=L-t, plate length minus the web thickness

2 2
tyHe + Bt" + byd:(2H, - d)

Cle=- neutral axis of combined plate and ring stiffener
tywHe + Byt+dby

from outer fiber of plate (R)

c1C=0.101in

Ro:=R+ .5t+c, radius to centroidal axis of combined ring stiffener and shell

R, = 8.148in

1 3 3 3 3
]e = S[LCIC —Bl'(Clc‘t) +bf‘(Hc—C]c) "(bf—tw)'(Hc"Clc‘d) ]
moment of inertia of combined plate and shell

|
Ie= 0.01in

Buckling of unreinforced shells
von Mises bucking pressure:
n:=1

guess at number of waves around the circumference
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ny = Minimizt(pur] ,n)
ny = 10.594
n must be an integer

Nyjnt = round(nl,O)

Nine = 11
M iy~ 1
int
ny =
Iprime
Nipe * 1
N int + 2

purl(rllprime0

n

Purl( "1prime,

Purl nlprime3

)
- purl(nlprime])
"] ron(Pipime)

("prime)

Pur = mir(purl)

Pyr = 607.943psi
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Axisymmetric Buckling

P cab =

Yy« 0
limite 10 psi
test «— 0 psi
conv « | psi
j<« 0

while j <20

1
ny« i —y

2

1
n2<—-~\}l+y

2

4
2
O «— \ISv(l - )

L
JR
4 cosh (T] 1-9)2 . cos(n 2~0)2
_E)—. cosh (n l-9)<sinh (r] ]-9) cos(n 2‘0)~sin (n 2~0)
+

Fy «

g M2
cosh(n -6)-sin (n ,-0) . sinh(n 1-0)-cos(n ,-0)
n, g
2 o (n 0)smh (n0) ox(np:0)-sin (n20)
Ny N2
cos(n 2'0)~sin(n 2'9) cosh (n ,.e)-sin}.(n 1-9)
F3e . 02 . _ A -
2 o (ny0) e (n10) cos(n,0)sin(n 7 0)
n 2
cosh(n ;-0)sin(n,-0) sinh(n -8)-cos(n ,0)
Py 3 - N2 : g :
j 2 cosh (n ,-e)-smh(n ,-9) . cos(n 2-0)~sm (n z-e)
g N2
(-2)-
A«

0. 0.
denoml(—Az- F22+F2-F 4-(1 —-Z-;l)- 912 +F42~(l—p+|.12)- —‘9—]2
1 - P~

3 .
denom 2 &(—)-A-[F 2 — WF 4 0.91 J
2 2
I — n
t
Oy R

\/% + denom | — denom 2

Pc2 <

break if |p o5 — test| < lim it

e P2 LGN

2-E

lcst«-—pcz
je—j+1

P2
out, ¢ ——

o cony

out, « )
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885.4
Pcab = 2

Paxiy = Pcab,, Ipsi

Paxiy = 885.4psi

Asymmetric Collapse (Lobar buckling)
Windenberg Approx of Von Mises (1933)

Assumes n lobes = Pi*D/L

NE
2.42E| —
D
0.75
L 1 2
=045 |— -(]—-}1)
D D

pCLB = 6049p51

PcLB=

General Instability of shells and rings

A= ER
L,

ny = Minimize(pCGI,n)

ny =3.109 n must be an integer
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Noing = round(nz,O)
Mint = 3

Mint = !

2int
Ny, o=
2prime Ring + |

Nint *+ 2

pcGX("ZprimeO

p«:Gl("Zprimel

Pegiz =
8 pcGl(n2prim<—:2)
pcGl(“Zprim%)
Pcgibryant -~ mi'(pcgiZ)

3 .
Pcgibryant = 1.522x 10" psi

Summary

Lobar Buckling

PcLB = 604.9psi
Axisymmetric Buckling
Paxiy = 885.4psi
General Instability

Pcgibryant = 1522 .3psi

Dint = 3
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Appendix B: Codes for Test Cylinder 1.f
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AMERICAN BUREAU OF SHIPPING

Definitions

ksi := 1000psi

E:=3000ksi  Modulus of Elasticity
v:i=03 Poisson's Ratio

oy = 9850psi Yield strength
Shell Parameters

s 1=2.663n Distance between stiffeners

L.:=42.129n  Distance between bulkheads

R :=17.3285n Mean radius of shell

t:=0.263in Thickness of shell
R =R+ é Outer radius of shell
R, = 17.46in
D, =2R, Outer Diameter of shell
Ring Stiffeners

t,:=0.198n  thickness of web of ring stiffener

depth := 1.025n height of ring stiffener

b=t faying width of stiffener (from P&S for I beam stiffener)
bf:=0.763n  breadth of ring stiffener

by:=bf —t,  breadth of ring stiffener minus the web thickness

d:=.263in ring stiffener flange thickness
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Ly =L -t, Unsupported spacing between stiffeners

Ly =2.467in

L:= ma>(LS ,Lb)

L = 2.665in

2 2
t,,~depth” + by-d . . X )
¢;=.5 first centroidal height of ring stiffener
ty,-depth + by-d

c; =0.351in
¢y = depth — ¢ second centroidal height of ring stiffener

¢y =0.674in
hi=c;-d distance from centroid of ring stiffener to nearest edge of flange
R =R - 5t-cy radius to centroid of ring stiffener

R = 16.523in

A= (tw-depth + bz‘d) cross-sectional area of ring stiffener
A = 0352in”

L= (é)(bfcf - bz-b3 + tw-c23) moment of inertia of ring stiffener about its centroidal axis
I = 0.031in*

R:=R - .5t—depth ~ Radius to tip of the stiffener

R¢ = 16.172in
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Combined Plate and Ring Stiffener

15Rt
L, :=mi
€ 0.75L

Effective length of shell

L, = 1.99%in

Ap =Lt area of effective plate

Agp=Ap+ Ag area of plate and ring stiffener

H, = depth + t height of combined plate and ring stiffener
H, = 0.107ft

By:=L-t, plate length minus the web thickness

tyH + Byt 4 byd(2H, - d) _ _ o
Clei=- neutral axis of combined plate and ring stiffener
t\V‘HC + B]t + db2

from outer fiber of plate (R0)

ClC = 0.4in
Re=R+.5t-c;, radius to centroidal axis of combined ring stiffener and shell
R, = 17.06in
1 3 3 3 3
I, .=§-[L-clc - By(cc—t) + bf-(H, - cre) - (bf =ty ) (H - ¢p - d) ]

moment of inertia of combined plate and shell

4
le =0.187in

General Equations

M =

3-

M =1.248
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Q=0.802

Noe cosh(2:Q) - cos(2:Q)
" sinh(2-Q) + sin(2:Q)

N=0774

G2 (sinh(Q)-cos(Q) + cosh (Q)-sin(Q))
B sinh(2-Q) + sin(2-Q)

G=0.934

_ sinh(2Q) - sin(2-Q)
" sinh(2-Q) + sin(2Q)

H=0.41

Inter-Stiffener Strength (6.19.1)
1) Inter-stiffener strength equations

This equates to axisymmetric buckling

A= AS-(—}}—) Effective area of plate and stiffener

A = 0.369in°

v
A-(l - ;)G
F._

- IN-t-L
)

A+tw-t+

F =0.267




yield pressure at midbay and midplane of cylinder

t
O'yR

Y 1-F

Py = 2039.3psi

von Mises buckling pressure for a cylinder

This corresponds to Lobar buckling

3
t 2
2.425(%)
P_:= -
m -3— 1
4 2
2 L
(1-v3) | L _gas(
2-R 2-R
Pm = 10369.9psi

maximum allowable working pressure for inter-stiffener strength

P P
PC = ..T if _m_ <1
2 Py
Py P
Py l-—— | ifl<— <3
m y
P
2P, if — 53
Yy o p
y
P
— =5.085
Py
P, = 1699.4psi
P,....=P.-8
an .
L P,its = 1359.5psi
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2) longitudinal stress

limiting pressure corresponding to the longitudinal stress at stiffeners reaching yield

No direct correlation to major failure modes

()

2:N-t-L

Y=

A+ tyt+

Py = 2098psi

P, =Pp.67  maximum allowable working pressure for longitudinal stress

P, = 1405.69psi

Overall Buckling Strength (6.19.5)

‘R
A= &=
L

n:=1
As(n) = n2 -1

4
A

Ai(n) = 5
(A (n) + X—J(
2 2

py(n) = %-Al(n) s

Given

E1,-Ay(n)




n22

Ny = Minimiz{pn] ,n)

ny = 2974 n must be an integer
Noine = round(n2,0)

Nint =3

Mofirst = | M2int 100 if npjp =1

Noine— | otherwise

N2first = 2
M2 first
M2int
"2prime*™
P Nint + 1
N2int + 2
pnl("ZprimeO)
pnl("2primel)
Pn2=
pnl("Zprim%)
pn](“ZprimeJ
Py = mil(pnz)

p, = 4496.1psi
Paol = pn~.5

Pao) = 2:248x 10 psi

n2primel =3
1151 % 104
4.496 % 103
P2 = 3
6.32x 10
9.774 % 103
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Summary
Axisymmetric Buckling
Py = 2039.3psi

Lobar Buckling

P, = 10369.%si

General Instability

py, = 4496.1psi

Mint =3

107




Germanischer Lloyd

MPa = 106Pa

ksi := 103psi

General Definitions

E := 3000Gsi modulus of elasticity

L :=2.665n stiffener spacing

Ly:=42.129n length of cylinder between bulkheads or lines of support
s :=0.263n thickness of shell ’

R :=17.3283n radius to centerline of shell

v:i=03 Poisson's Ratio

k := 98.5ksi minimum yield stress of material

Stiffener Dimensions

ep:=0.263n flange thiékness

dg:=0.2825n width of flange from web to edge of flange
b2 = 2-df

d, =0.762n Height of web

e, = 0.198n web thickness

b=e, width of stiffener ring in contact with shell

A= ef'(ew + z.df) +e,-d,  cross-sectional area of stiffener ring

Ay =0352in°
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Hgiepi=dy, + ef

HStiff = 1.025in

2 2
1 Swilsiier + boey
2 ey Hgipr + byeg

CI:

¢y =0.351in
©2 = Hytiff ~ €

¢y =0.674in
hz = Cl - Cf

h, = 0.088in

I = (%)[(ew + :z»df)~c13 - (2vdf)~h23 + ew~c23] Centroidal Moment of inertia of ring stiffener

I, = 0.031in*
ei=cy+ .58 distance from stiffener centroid to center of shell

e = 0.805in

Effective Stiffener and Shell
Letest =b + \,2-R-S

Lo = [Letest i Letest <1y Effective length of shell (eqn 45a,b)

Ll otherwise

L, = 2.665in
Alez Le'S3 . .
I, = VR 1 + - Moment of Inertia of combined plate and shell
1
1+ —
Les
4
I, = 0.187in
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Hgtife = Hegifp + S Total height of stiffener and plate
Hifr = 1-288in

dy:=s

bsy:=L,-e,

2 2
ewHgtiere + byep + bs 1'5'(2'Hstiffc - S)

C] =
ew Hgtiffe + bp-ep + bs s

1
C‘z

Clc= 0.888in

2¢ = Hgtiffe ~ ©1c

C2C =0.4in
Ry=R+ .55~ cy radius of stiffener ring centroid including effect of L
R, = 17.06in
.
A=Ap— Modified area of stiffener ring
2
RO
A = 0.363in”

e] = Czc + .55

2.4 Asymmetric Buckling (Lobar but not named this)
Api=— eqn 19

n:=2 initial guess
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—2 + 1 +
}‘1 IZ-RZ-(I -V )
n) :=
n -1+ 511
E-s-Bq(n)
(n) =
Pni1 R
Given
n>2

ng = Minimize(pn] ,n)

ng =10936  nmust be an integer

Ngint = round (ng , O)

Ngint = 11

100 if n

Nofirst = | Ngint’ gint = 1

Ngint ~ 1 otherwise
Nofirst = 10
Nofirst 10
Noint 11
Boprime = 1 Noprime = 12
Ngint *
Ngint + 2 13

Pn1 fgprime;

1

pnl(rlgprime

Pni ngprimez)
pnl("gprime3)
Per = mir(an)
Per = 9269.1psi
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3.3.3 General Instability
L:=14 Spacing between effective stiffeners
m-R
Ay i=——
27 L

Ay =1.292

4
Ay

2
2
(nz -1+ 05)\.2 )(nz + XZZ)

E-s- an(n)

an(n) =

po(n) ==

(n2 - l)~E-Ie

R, L,

pi(n):=

pn]a(n) = po(n) + p](n)

ny = Minimiz{pn]a,n)
Ny = 2955 n must be an integer

Nyt = round(nz,O)

Mint =3
Nint = 1
N2int
n H =
2prime-
Mint + 1
Nint + 2
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Pnlal "2prime,

' ( ) | 11569
n .
pnla( 2pr1me]) 4651 .
Pgp = Pg2 = ps!
Pnla(“Zprime2> ° 6612
( > 10240

Pnla n2prime3

pg = mir(pgz)

p, = 4651 4psi

2.6 Symmetric Buckling (axisymmetric)
More Definitions

For Elastic-Plastic Region (Eqns are in the program)

E :=E Secant Modulus = Young's Modulus for elastic region
E, :=E Tangent Modulus = Young's Modulus for elastic region
‘ vp =V Poisson’s Ratio, elastic-plastic; = Poisson's ratio in elastic

o= shape factor
Cs:= oL, calculation factor for symmetric buckling
2~52-E ‘
Past = —————Critical pressure, elastic, calculation factor
{ ‘ 2;
R2- 31 —v
Past = 8364.87psi
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. cosh (Cg)” - cos(Co)?
F7Cs coh (Cg)sinh(Cg) cos(Co) sin(Cy)
Ce ' 7

cosh (Cg)-sin(C()) . sinh(Cs)-cos (Cg)

G Co
Fa= cosh (C8)~sinh(C8) cos(C9)~sin(C9)
Ce ' G

cos(Cg)-sin(C9) . cosh(C8)~sinh(C8)

I G Ce
3= | ~v2 cosh (Cg)-sinh(Cg) . cos(Cg)‘sin(C9)

Cs C;

cosh (Cg)-sin(C9) ) sinh(Cg)'cos (C9)

P 3 G Cs
4 |- VZ cosh (CS)-sinh(Cg) . cos(Cg)-sin(Cg)

Ce G
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1
GX:: GO‘(E + C10C11F4)
Cd) = 00(] - C]()Fz -+ VC]()C] 1F4)
) 1
Sx1°= %07 5 ~ “10C11Fy
8
ox:—8.275x 10" Pa
041 7= 0o (1~ CroF2 = v-C1gCr1Fa)

0¢= -1.013x 109Pa

if the calculated stress is > .8 of the yield stress, then must use E;, Es, etc

.8-k = 78.8ksi

%o

X

Ko =

’ 2 2
Gi:: Gx +G¢ —Ux'Gq)

o;= 135.505ksti
c =—KO Oy
o = 147ksi
el
1 E
-3
g1 =4.898x 10

c = k-(.S + .2-tanh(5'—1§-s] - 4))
k

o = 98461.1psi
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€=

m =

-(o.s + O.2~atanh(5-% - 4))

£ =4898x 10 °

frvsfon(ete- )]

E, = 2.009% 10" ksi

E = E—(l - tanh(S--Es - 4))

E, = 59.275ksi

ES =

o | =
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HyHs-Hy

Cy=| 1+
3
C3 =-0.748
Hy Hy
=11-
G H,
2
H,"H,
Cl = l -
H;
2
C1Cy- vy G
CO =
-
Vp
4
2
G C3
3 — - Vo oo
| Cl Cl i
0(1 = y
s ‘R
trial ;.=
T
trial = 0.173
m:=1
trial2:= ,2~(m+ )
2
trial2 =1 iterate on m until trial is < trial2

2 2
oyl 1({ nm
Pm=PaaCo|| — | +7
-m 4| o 1L
P = 2931 .4psi

p = 2931psi

iterate on p until py, is equal to p
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Summary
Axisymmetric Buckling
Pm = 2931.4psi

Lobar Buckling

Per = 9269.1psi

General Instability

Pg = 4651 4psi
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Society of Naval Architects and Marine Engineers

Submersible Vehicle Systems Design
ksi := 1000psi

Input Section

L¢:=2.665n Length between frames
L =42.129n Length between Bulkheads
R :=17.3284n Radius of cylinder to centerline of shell
t:=0.263n shell thickness
Ry:=R + .5t radius to outside of shell
Rg = 17.46in
E := 30000ksi modulus of elasticity
oy = 98.5ksi minimum yield stress of material
n:=03 Poisson's ratio
Ring Stiffeners
t,, ==0.19&n thickness of web of ring stiffener
depth := 1.025n total height of ring stiffener
bf := 0.763in breadth of ring stiffener
d := 0.263in ring stiffener flange thickness
by =bf —t,, breadth of ring stiffener minus the web thickness
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2 2
t,-depth™ + by-d

cp=.5 first centroidal height of ring stiffener
tyydepth + by-d

¢ =0.351in

cy:=depth — ¢, second centroidal height of ring stiffener
¢y =0.674in

hi=c;-d distance from centroid of ring stiffener to nearest edge of flange
h = 0.088in

R:=R-.5t-c, radius to centroid of ring stiffener
R, = 16.523in

A= (tw-depth + bz-d) cross-sectional area of ring stiffener
A, = 0352in”
L= (%)-(bf-cf - bz-h3 + tw.cz3) moment of inertia of ring stiffener about its centroidal axis

I, = 0.031in’

Combined Plate and Ring Stiffener

Ap =Lyt area of effective plate

Asp = Ap + A, area of plate and ring stiffener

H, :=depth + 1t height of combined plate and ring stiffener
By :=Lg-t, plate length minus the web thickness
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tyH, + Byt + by-d-(2:H, - d) . . o
1= neutral axis of combined plate and ring stiffener
tyHo + Byt +dby

from outer fiber of plate (Ry)

Clc =0.4in
R.:=R+.5h ¢, radius to centroidal axis of combined ring stiffener and shell
R, = 16.972in

1 3 3 3 3
I, = E{Lfclc = By(ogc — 1) + bf(H, — ¢ o) = (bf — t,,)-(H, — 1 - d) }
moment of inertia of combined plate and shell

.4
Ie =0.187in

a. Axisymmetric yielding

B=10.129

o = 10121 - uz)f'(;_;)(%)

6 =1.605

__ cosh (9) - COS(G)
= sinh(O) + sin(G)

N=10.774
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11-N tz
Bim .
50._1— AL+ tt
R
B =1.675

3-sinh(g)-cos(g) + cosh(g}sin(?—)
H 2 2 2 2

B sinh(e) + sin(O)

Py = 1927.7psi

b. Lobar Buckling

Pp = 10369.94%si -

¢. General Instability
n-R
m:= —
Ly,
n:=1
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- 4 (w2 1)-E~Ie
Pera(m) =~ +
R 2 3
2 m ( 2 2)2 R’ L¢
n —-1+—1!tn +m
2
Given
n2>1
ny = MinimiZ({pcr] ,n)
ny = 2.974 n must be an integer
Noint = round ("2’ O)
Mint = 3
Nofirst'= | M2int 100 if npjpe =1
Ny — 1 otherwise
M) first = 2
n
2first 2
Mint 3
M prime= Noprime™
p Ngint + | P 4
Nint + 2 >
pcrl(n2prime0>
11510.622
Per1{ ™2prim
9 4496.065
Per2 = Per2 =
pcﬂ(nzprimez) 6320.305
9773.51
pcrl(“ZprimeB>

Per = mir<pcr2)

Py = 4496. Ipsi

123

psi




Summary
Axisymmetric Buckling
Py = 1927.7psi

Lobar Buckling

pp, = 10369.9psi

General Instability

Per = 4496.1psi
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MIT 13A Professional Summer Submarine Design Trends

PROGRAM TO COMPUTE SUITABILITY OF SUBMARINE DESIGN PARAMETERS.
Ref: "Hull Material Trade Off Study”, D Fox, Jan 94

Define input parameters:

ksi = 1000psi
Global Variable Inputs:
e =0.0in Eccentricity
Material:
oy = 9850psi Yield Strength
E = 30000ksi Modulus of Elasticity
v=03 Poisson’s Ratio
Geometry:
D = 34.657in shell diameter
R=2

2 shell radius
tf = 263in flange tickness
Lf = 2.665n frame spacing
wy = .763in flange width
L = 42.129in bulkhéad spacing
ty = .198in web thickness
tp = 0.263n shell thickness
hy =.762n web height
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t .
R;:=R--2  Frame Radius
2

Ry = 17.197in

Af = tr-wp Frame flange, web area:

Ay =ty -hy

A=Ar+ A, Frame Area = Flange + Web
A= 0.352in2

PART 1 SHELL YIELDING

Von Sanden and Gunther (1952)

PNA Section 8.4

t\\"tp

= Area ratio
A+ twtp
!
3 (l vz) !
0:=Lp| ——— Slenderness parameter
(Rp)?

cosh (9) - cos (9)

N:= Deflection coefficient:
sinh(e) + sin(e)
2N 1 025 3
B = . JRtp Frame flexability parameter:
A+ twtp ( 2)
Al-v
B=1676
A%
(] ] 5) -
M=t Frame deflection parameter:
1+8
I =0.269
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w{5)l5) ) )
sinh| — |-cos{ — | + cosh| — {-sin| —
2 2 2 2 Bending effect(mem):

Hym =2
M sinh(6) + sin(6)

Hy = -0.934

sinh(@) + sin(e)

(5)=) ) (E)

0.5 sinh{ — [-cos| — | — cosh{ — |-sin| —

Hg = —2-[ & 2) . 2 2 2 2 Bending effect (bend):
1-v

K:= sinh(6) - sin(0) Bending efffect near frame:
sinh(e) + sin(e)

Pl = |fye< oy
Poé——lpsx

Pl <« 1000 psi

P, < 5000 psi

2
delta < 5 psi
limit «— 1 psi
conv ¢« 1 psi
je D

while j< 200
for ie0..2

-P.R
O ggso —1—[1 +ITiHpm + vH E"]
tp

-P.R
O ¢isi —1[1 +TiHp - vH E']
tp

-P..R

O om0 < ——i0.5 + T-HE
tp
-P.R
O yosi ¢ — 105 -T-HEi
tp

_pi.R 3 0.5
cwc,e——t——- 1-T 1+v-( 2} ‘K
P 1-v
_pi.R 3 0.5
cm(———t————- 1-I- l—v-[ 2J -K
p 1-v .

127




Usy(—

1

2 2 2
USYM(—(GI —51-02+52)
1

2 2 2
csyp(——(o3 -D’3<0‘4+0'4)

G SYM
O Sy ¢ max
((USYF D

stxessi €« oSy

testie— nfy— G sy!

tes
shel «

conv

test
dav «

conv

break if shess1 —fy < limit

PU “— P1 if shel-dav > 0

P2<-——P1 if shel dav <D
iP,~ Py
2 70
P1<—PD+—2—
Jje=j+1
Pl

OU'U < conv

outl<—j~1

out
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1994.11
Pcrl = 16

Perit ©== pcrlo' 1psi

Perit = 1994.1psi

PART 2 LOBAR BUCKLING
Windenberg Approx of Von Mises (1933)
Assumes n lobes = Pi*D/L

Collapse pressure:

LS
242E| 2
D

(—Lﬁ - 045 t—pj(l - v2)0.75

PeLBp =
D D

PoLB = 10369.9psi

PART 3 GENERAL INSTABILITY

Corrected Bryant Formula (1954) for better model test correlation

Pressure loading is:

P := 6000pst

Compute effective frame spacing:

P (R 2
=— | = | y3l1-v
2E | tp
y=0.717

Compute clear length:
Le=Lf -ty
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ny = 0.5-\/1 -y

ny = 0.266
Web thickness:
ny =051 +y
ny = 0.655
ty = 0.198in
2 2
F:= ;;1‘ cohlrnd) - Cos(nz'e) must be less than 1.00

cosh(n1~9)-sinh(n]~9) cos(n2-6)~sin(n2-9)
+

n ny
Fy = 0.958
F\ is almost a linear decreasing function for pressures from 1 to 10000 psi with an average value

of 0.91. This will be used in the following analysis as the pressure is the unknown and therefore

the above equations cannot be directly used.

F| :=0.96
Leff = Lo Fp + ty Effective shell plate length:
Lefr = 2.566in

Theoretical critical lobe number values are:

2
n:=|3 Circumferential Lobes
4

Acfr = Lefptp Effective plate area:

Acfr = 0.675in
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m:= n%s- Longitudinal Lobes:

m=1.292

hy + tf hy +t
S AT T A
Yna = Frame-plate neutral axis (ref web centre+ toward flange):
Aeff + Aw + Af

Yna = —0.237in
Uses Parallel Axis Theorm: Icor=1+ Ad2

Moments of inertia for plate,flange,web:

3
_ Leff'tp
P2
3
. t\\/'hW
W 12
3
wi-tf
Ig =
12

2
tp + hy
Iocor =1Ip + Acff 2 + ¥na

Lyeor =Tw + AW'()’na)2

2
tr+ hy
Ifcor = I + Af‘( S Yna)

Total:

Lef = Ipcor + weor + Ifcor Moment of Inertia corrected for neutral axis.

Lefr = 0.]85in4

The critical Elastic General Instability pressure is:
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Min Pressure:

115 10'
PeGI=| 446x 100 |Psi

6.253% 10°

=
1l
HOWON

Pegyi= mi'(PcGl)
PcG1 = 4460.2psi

ngj:=3

Summary
Axisymmetric Buckling
Perit = 1994.1psi

Lobar Buckling

P.Lp = 10369.9psi

General Instability

PcG1 = 4460.2psi

ngi=3
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Analytic Solution
Definitions

ksi = 6.89475710°Pa

E := 3000(ksi

R :=17.3284n
D:=2.R

Oy = 98.5ksi
L:=2.665n

Ly = 42.129n
p=.3
t:=0.263n
Ring Stiffeners
ty = 0.198n
H:=1.025n
b=t

bf := 0.763in
by:=bf -t

d :=0.263n
Lonash =L~ bf

Modulus of Elasticity
Radius of cylinder to centerline of shell
Diameter of cylinder

Yield strength

Length between stiffener centers

Distance between bulkheads

Poison's ratio for Fe/Steel

Shell thickness

thickness of web of ring stiffener

height of ring stiffener

faying width of stiffener (from P&S for I beam stiffener)

breadth of ring stiffener

breadth of ring stiffener minus the web thickness

ring stiffener flange thickness

distance from flange edges
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tW'H2 + by d2 . . . .
cpi=.5 W first centroidal height of ring stiffener
¢; = 0.351in
¢y:=H-c second centroidal height of ring stiffener
¢y =0.674in
hi=c;-d distance from centroid of ring stiffener to nearest edge of flange
h = 0.088in
R:=R-5t-c, radius to centroid of ring stiffener
R, = 16.523in
A= (ton + bz'd) cross-sectional area of ring stiffener
A= 0.352in”
L= (%)-(bf-c]3 - b2~h3 + tw-c23) moment of inertia of ring stiffener about its centroidal axis
I, = 0.03lin"
Agffi= Ar-(%) effective area of stiffener eqn [24a] from P&S

2
Agp = 0.369in

o= ALetff ratio of effective frame area to shell area eqn [62] P&S
o =0.526

B :=% ratio of faying width to frame spacinig eqn [62] P&S
B =0.074
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Combined Plate and Ring Stiffener

Ap =Lt

ASp :=Ap+Ar
HC::H+t

H, = 0.107ft

B] ::L—t\’V

2 2
ty He + Byt + byd(2H, - d)

area of effective plate
area of plate and ring stiffener

height of combined plate and ring stiffener

plate length minus the web thickness

neutral axis of combined plate and ring stiffener

toH + Byt + d-b,

ch:0.4in

c:——'R—.S't*C]c

R, = 16.797in

1 3
Ie = ;'[L'Clc

from outer fiber of plate (RO)

radius to centroidal axis of combined ring stiffener and shell

= Bp{oge ~ 1)+ bE(H, - o1 - (b6 - ) (H - ey - 4)' ]

moment of inertia of combined plate and shell

.4
Ie = 0.187in

a. Buckling of unreinforced shells

von Mises bucking pressure:

n:=1 guess at number of waves around the circumference
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ny = Minimize{pur] ,n)

ny=10906  nmust be an integer

Ning = round(nl,O)
Nine =11

Nint = !

Nint

™ prime*=
Mint+ 1

Mint ¥ 2

pur](nlprimeo)
purl("lprimq)
purl(nlprimez)

)

pur]("lprime3

Pur] =

Pur = mir(pur])

Pyr = 9272 .3psi
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b. Axisymmetric Buckling

Peab = |Y < 0
limit < 1psi
test « lpsi
conv « Ipsi
j<0

while j< 1

1
— —f1-7
n 2

My & ';'\/T*—Y
N 7] L
8« 3\l -p ﬁ
cosh (n 0" - cos(n0)”
«— . .
© cosh (nre)-smh(n]»e) X cos(nz‘e)-sm(nz»e)
n N2
cosh (nre)-sin(qzve) . sinh(nl-e)-ccs(n2~9)
n2 m
cosh (n1-0)-sinh(n ;-0) . cos(n-0)-sin(n,0)
n n2
cos(ny8)-sin(ny8)  cosh(ny-0)sinh(n,-6)

3 2 N

Fy

Fy «

Fae - “2 cosh (n l'B}‘sinh(r] ]~9) . cos(nz-e)-sin(nz-e)

n N2
cosh (n ]‘9)~sin(n 2»6) sinh(n 1-9)-cos(r12‘0)

Fe |3 "2 1
4 - pZ cosh (nl»e)-sinh(n ]~6) . cos(n2-9)~sin(ﬁ2~6)

LA n2

P2 <

3

}; + denom] - denom2

74—2[\]3[1 uzﬂ Y’
2E t

break if !pcz —testl < limit
test < p.y

jeg+l

out
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[ 2.141610°
Pcab =
2

Paxiy = pcabo' Ipsi

Paxiy = 2140.7psi

c. Asymmetric Collapse (Lobar buckling)
Windenberg Approx of Von Mises (1933)

Assumes n lobes = Pi*D/L

\25
242E| —
0.75
L t 2
——Q%—~~“~u)
D D

PcLB = 10369.%si

PcLB=

d. General Instability of shells and rings

A=

TR
L,

ny = Minimiz(pcGI,n)
ny=2974 n must be an integer
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Noint = round (nz, 0)
N2int = 3

N2int ~ 1
M2int
Ny . 1=
2prime
Mint * 1

Mine + 2

pcGI(n2prime0

)
pcGI<n2primel)
Pegi2 = pcG](“ZPrimez)

)

pcGl(“Zprime3
Pcgibryant = mi’{pcgiZ)
= 4496.1psi

Pcgibryant

Summary

Lobar Buckling
Axisymmetric Buckling

Paxiy = 2140.7psi

General Instability
Pcgibryant = 4496.1psi

Nint = 3
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Appendix C: Codes for Test Cylinder 2.a
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AMERICAN BUREAU OF SHIPPING

Rules for Building and Classing Underwater Vehicles, Systems, and Hyperbaric Facilities

Definitions

ksi := 1000psi

E := 3000(ksi Modulus of Elasticity
vi=03 Poisson's Ratio

Oy = 6550si Yield strength

Shell Parameters

Lg:=1.366n Distance between stiffeners
L, :=8.63Gn Distance between bulkheads
R :=8.4179n Mean radius of shell
t:=0.0858n Thickness of shell
R =R+ % Outer radius of shell
R, = 8.461in
D, :=2R, Outer Diameter of shell
Ring Stiffeners
t,, == 0.044n thickness of web of ring stiffener
depth := 0.5319n height of ring stiffener
b=t faying width of stiffener (from P&S for I beam stiffener)
bf := 0.39%n breadth of ring stiffener
by:=bf -1, breadth of ring stiffener minus the web thickness
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d :=0.078n ring stiffener flange thickness

Ly =L -t Unsupported spacing between stiffeners
Ly, = 1.322in

L:= mzu(LS ,Lb)
L = 1.366in

2 2
t,,-depth” + by-d . i . .
¢ =5 first centroidal height of ring stiffener
t,,-depth + byd

¢y =0.143in
¢y :=depth — ¢} second centroidal height of ring stiffener

¢y = 0.389in
h:=c;-d distance from centroid of ring stiffener to nearest edge of flange
R, “R+ 5+ cy radius to centroid of ring stiffener |

R, = 8.85in

Ag = (tw~depth + bz-d) cross-sectional area of ring stiffener
Ag =0.05lin’

L= (-;—)-(bfvcﬁ - b2-h3 + tw-cz3) moment of inertia of ring stiffener about its centroidal axis
I =1.219x 1077 in*

Rg:=R + .5t + depth Radius to tip of the stiffener

R = 8.993in
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Combined Plate and Ring Stiffener

1.5-\/R~t
Le =mi
0.75LS

e = 1.025in
Ay =Lt area of effective plate
Agp =Ap + Ag area of plate and ring stiffener
H, :=depth +t height of combined plate and ring stiffener
H, = 0.051ft
B =L-t, plate length minus the web thickness

tyHe + Byt 4 byd(2H, - d) , . o
Clei=- neutral axis of combined plate and ring stiffener
tW.HC + Bll + dbz

from outer fiber of plate (Ro)

C1c = 0.174in
R =R - .5t+c, radius to centroidal axis of combined ring stiffener and shell
R, = 8.54%in
1 3 3 3 3
1= ;-[L-clc - Bl-(clc 1)+ bf-(H, - cre) - (bf - ty)(He -1~ d) ]
moment of inertia of combined plate and shell
4
I = 0.008in
General Equations

M=

R

M = 1.607
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6 = [3~(1 - vz):l ' M

6 =2.066

o)
I
N @

Q=1.033

Noe cosh(2-Q) - cos(2-Q)
" sinh(2-Q) + sin(2-Q)

N =10.942

_o. (sinh(Q)-cos(Q) + cosh (Q)-sin(Q))
- sinh(2-Q) + sin(2-Q)

G:

G=0.835

Hee sinh(2Q) - sin(2-Q)
~ sinh(2:Q) + sin(2Q)

H=0.631
a Inter-Stiffener Strength (6.19.1)
1) Inter-stiffener strength equations

This equates to axisymmetric buckling

2
A=Ay R External stiffeners
Ry
A = 0.046in>
Vv
All1-—|G
2
F:=
N-t-L
A+ tyt+ 5
F = 0.209

Effective area of plate and stiffener
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yield pressure at midbay and midplane of cylinder

t
GyR

Y 1-F

Py = 844.1psi

This corresponds to Lobar buckling

von Mises buckling pressure for a cylinder

()’

2-R
P, = 2947 7psi

maximum allowable working pressure for inter-stiffener strength

P P
Po= [— if — <1
2 P,
p P
Py(l——y—j if1<—2<3
P, P,
P
=Py if BLLIGY
Py
P
;T =349
y
P, =703.4psi
Paits = P8
Poits = 562.7psi
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2) longitudinal stress
limiting pressure corresponding to the longitudinal stress at stiffeners reaching yield

No direct correlation to major failure modes

= 2-N-t-L
A+ tyt+
6
l -1
Pl = 1+ Y H
R 2
1-v
P = 848.5psi

maximum allowable working pressure for longitudinal stress
Pals = P167

P,js = 568.47psi

b Overall Buckling Strength (6.19.5)
A= =R
LC

n:=1

As(n) = n2 -1
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ny = Minimize(pnl ,n)

ny = 3.957 n must be an integer
Ny;ine = round (n2,0)

Mint =4

Mfirst = | "2int 100 1f i =1

Nyint 1 otherwise

n2first =3
) first
M2int .
M2prime = Noorime, =
P Mint + 1 prime
Dint + 2
Pnl n2pr|me0) 2.609x 10°
n .
pnl( 2p"me1) 6.498x 10° |
Pn2 = Pn2 = pst
p"‘("zpfimez) 7797 10°
pnl(anrimes) 1.054x 10°
Pp-= mi'(an)
= 6498 2psi
Paol =Pp-5
3
P,o1 =3.249x 107 psi
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Summary
Axisymmetric Buckling
Py = 844.1psi

Lobar Buckling

P = 2947.Tpsi

General Instability

p;, = 6498.2psi

Nint = 4
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Germanischer Lloyd

1988 Edition

Chapter 2 - Submersibles
MPa := 106Pa

ksi = 103psi

General Definitions

E := 3000Gsi Modulus of Elasticity

L; := 1.366n stiffener spacing

Ly :=8.636n length of cylinder between bulkheads or lines of support
s := 0.0858n thickness of shell

R :=8.4179n radius to centerline of shell

v:=03 Poisson's Ratio

k := 65.5ksi minimum yield stress of material

Stiffener Dimensions

eg:=0.078n flange thickness

dg:=.1775n width of flange from web to edge of flange
by :=2-dg

d,, = 0.4539n Height of web

ey, = 0.044n web thickness

bi=e,, width of stiffener ring in contact with shell
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A= ef-(ew + 2-df) +e,-d,  cross-sectional area of stiffener ring
Aq=0.051in”
Hgigr:=dyw + ¢

HStiff =0.532in

2 2
1 Swlier + boer

Cl =
2 ey Hgigp + byer
¢y = 0.143in
c2 = Hyiff — €1
Cy= 0.38%in
h2 = Cl - ef
h, = 0.065in

I = (%)I:(ew + 2'df)-c13 - (2-df)~h23 + ew~c23] Centroidal Moment of inertia of ring stiffener

I; = 1.219x 107 %’

e=cy+ .55 distance from stiffener centroid to center of shell

e = 0.432in

Effective Stiffener and Shell

Letest =b + \/2-R~s

Lotest = 31.645mm
Lo = |Latest if Letest <1q Effective length of shell (eqn 45a,b)

L] otherwise

L, = 1.246in
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Moment of Inertia of combined plate and shell

e =7.732x 10 2 in’

Hgtigre = Hatiff + 5 Total height of stiffener and plate
HStiffC = 06]8]1’1
dl =5

bslzzLe‘—ew

2 2
ewHgiifre + byeg + bsyos:(2Hgpr - S)

Cp.i=
1
ew‘l']stiff(: + b2'ef + bsrs

1
€2

Clc = (0.435in

¢2¢ = Hgtiffe — C1¢

¢y = 0.183in
R,:=R - .55 + ¢y, radius of stiffener ring centroid including effect of L
R, = 8.558in
R2
A=Ap— Modified area of stiffener ring
2
R,
A= 0.049in2

e =Cy. + Ss

e = 0.225in
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2.4 Asymmetric Buckling (Lobar but not named this)

‘R
)\.1 231"
L
n:=2 initial guess
2
-2 2( 2 2
nz S -(n -1+ ?\] )
— +1 +
2 2
A 12-R2~(1 -V )
n) =
Bn1(m > .
n -1+ 5}\.1
@) E-s-B,1(n)
n)y=—
Pnl R
Given
n=2

ng 1= MinimiZf(pnl ,n)
ng =13.832  nmust be an integer

ngint = round (ng,O)

ngim =14
N first = ngint'loo if Ngint = 1
Ngint ~ 1 otherwise
Nofirst = 13
n
gfirst 13
Ngint 14
Pgprime=| 1 Rgprime = 15
ngmt
16
Noint * 2
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Pn1{ Mgprime;

Ppi( 0

(
R
n2 (

(

gprimel
Pni( D

n

Pn1{ Mgprime,

)
)
gprimez)
)

Per = mi'(pn2)

Per = 2814.7psi

3.3.3 General Instability

L:i=14 Spacing between effective stiffeners
R
Ay 1= ———
27 L

Ay = 3.062

4
Ay

2
2 2
(nz -1+ 05}\.2 )(nz + )\.2 )

Es-Bp(n)
R

(nz - 1)-E~I
- ¢

3
Ry Ly

Bpa(n) =

Po(n) =

py(n):=

Ppialm =py(n) + py(n)
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ny = Minimiz{pnla,n)

n,y =401 n must be an integer

Noint = round(nz,O)

Nint = 4
Nint ~ !
Mint
M prime =
P Mint * 1
Mint + 2
pats o)
nla( prime, 8.442x 10°
o
Pn]a( 2pnmel> 6.185x 103 .
p ) - p 2 = pSl
g . g
pn]a(anrlmez> 7.296x 10°
Pnla(anrime}) 9.812x 103
Pg = mir(pgz)
Pg = 6184.9psi

2.6 Symmetric Buckling (axisymmetric)
More Definitions

Default values for Elastic-Plastic Region (Eqgns are below)

E:=E Secant Modulus = Young's Modulus for elastic region
E :=E Tangent Modulus = Young's Modulus for elastic region
Vp =V Poisson’s Ratio, elastic-plastic; = Poisson's ratio in elastic
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o= shape factor
1

o =0.06—

mm
Cy=al; calculation factor for symmetric buckling

Cs = 2.066

25%E i
Past = ————— critical pressure, elastic, calculation factor
R73\1-v

Past = 3772.567si

Must guess pressure and then change when compared to Pm at bottom of calculation

G:= £
Past
C6 = %\/ 1-G
1
C7 = ’2‘ 1+G
Co=CsCy
4 cosh (C8)2 — cos (C9)2
1= _(g cosh (Cg)-sinh(Cg) cos(Cg)-sin(C9)
Ce : G
cosh (Cg)-sin(C9) sinh(Cs)-cos (C9)
F2:= cosh (Cg)-sinh(Cs) cos (Cg)-sin(C9)
Ce ' G
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cos (C9)~sin(C9)

cosh (CS)-sinh (Cg)

. & Cs
3 [ - v2 cosh (Cg)-sinh(Cg) . cos(Cg)-sin(Cg)
Ce %]

cosh’(CS)'sin(C9) B

sinh (Cg)-cos (C9)

I & C
4 - v2 cosh (C8)~sinh(C8) . cos(C9)-sin(C9)
Co %

1
Ox = %'(5 + o€ 1‘F4)

o, = ~4.675x 10°Pa

Gd) = GO'(I - ClOFZ + VC]OC] 1F4)

oy = =5.789% 10°Pa
_ 1
Ox1=0%0’| 5 ~ Ci0Ci1Fy

Oy = —2.292x 108 Pa

o417= 0 (1~ CroFy ~ vCrpCrrFy)

cr(m = -5.074x% 108 Pa
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%6

X

Ko =

.8k = 52.4ksi

If the calculated stress is greater than .8k then must find Ei, Es, etc.

[
Oi.= Cx +0’¢ —O'X'G(b

o;= 77.165ksi
o= —Ko-ox
L ._S
1 E
-3
€] =2.799% 10
E
o :=k| .8 + 2-tanh 5-;-81 -4
G = 65290.1psi
€= 5 0.8+ 0.2-atanh 5~E -4
E k
—3
£=2.799x 10

ES =

o | =

{osoa(um(sEc- )]

Eg = 23254.1ksi

)

E, = 480.6ksi
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C3 =11+
Vp Hl
C3 = —0764
2
=l H3 -Hy
: H,
C,=0.167
2
Hy Hy
Cl =[1-
H
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=S

0.] = >
s -R
LIRS
trial :=
b1
trial = 0.353

Iterate on m until trial <= trial2

m:=1

trial2:= [ = (m+ 1)
J 2

trial2 =1

2
2
oLy 1{ 7nm
Pm™=Paa Co 7
mnm 4 03 l'L]
Pm = 1029.8psi

p = 103(psi Iterate on pressure until py, is equal to p

Summary
Axisymmetric Buckling
Py = 1029.8psi

Lobar Buckling

Per = 2814.7psi

General Instability

Pg = 6184.9psi
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Society of Naval Architects and Marine Engineers

Submersible Vehicle Systems Design

ksi := 1000psi

Input Section

Lg:=1.366n
L, = 8.63an
R :=8.4179n
t:=0.0858n
Ryp=R + .5t

R = 8.461in
E := 30000ksi
Oy = 65.5ksi
n:=03
Ring Stiffeners
t,, = 0.044n

depth :=0.5319n
bf := 0.39%9n
d:=0.078n

byi=bf ~ 1,

Length between frames
Length between bulkheads

Radius of cylinder to centerline of shell
shell thickness

radius to outside of shell

modulus of elasticity

minimum yield stress of material

Poisson's ratio

thickness of web of ring stiffener

total height of ring stiffener
breadth of ring stiffener
ring stiffener flange thickness

breadth of ring stiffener minus the web thickness
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2 2
ty-depth + by-d

cp=5 first centroidal height of ring stiffener
t,y-depth + bs-d

¢y =0.143in
¢y :=depth —c, second centroidal height of ring stiffener
¢y =0.38%n
hi=cy-d distance from centroid of ring stiffener to nearest edge of flange
h = 0.065in
Ri:=R+ .5t+cy radius to centroid of ring stiffener
R, = 8.85in

A, :=(t,, depth + by-d) cross-sectional area of ring stiffener
A= 0.051in”
L= (l)(bf-c]} - bz-h3 + tw-c23) moment of inertia of ring stiffener about its centroidal axis
3
L=1219x 10" " in*

Combined Plate and Ring Stiffener

Ap=Lgt area of effective plate

Agp =Ap + A area of plate and ring stiffener

H, :=depth + t height of combined plate and ring stiffener
By =Lg-t,, plate length minus the web thickness
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C]C'

R =

Ie =

2 2
tyHe + Byt +byd-(2H - d)

neutral axis of combined plate and ring stiffener

tyHe + Byt +dby
from outer fiber of plate (Ro)
¢y = 0.174in
R - .5t+cy, radius to centroidal axis of combined ring stiffener and shell
R, = 8.54%n
iperd ~Bpfere- 9 + b0 (e o1 - (o - 1) (1 - e1 - )

moment of inertia of combined plate and shell

. 4
Ie = 0.008in

- Axisymmetric yielding

— w.
Al. + ty,t
B =0.069

6 =2.066

_ cosh (9) - cos(e)

sinh(e) + sin(G)

N =10.942
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B =1947

3»sinh(g)-cos gj-kcosh g)-sin g
Ho 2 2 2 2

sinh(6) + sin()

H = -0.681
t
0y' R
Py 0.85- B
1+H
1+8
Py = 814.733psi
Lobar Buckling
- B -
2
L
2.42E ( 2-R)
Pp =
3 1
4 L 2
(1 -u ) _ 0.45( ——
2R 2R} |]
3
Pp = 2.948x 10" psi
General Instability
n-R
mi= —
Ly,
n:=1
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Bt m X (2 1)~E~1e

Per(n) =
R ( 2 mzj( 2 2)2 R3~Lf
n -1+ —2— An 4+ m

Given

nx1
ny = Minimizc{pcrl ,n)

n, = 3.957 n must be an integer

Roint = round (“2’ 0)
Nint = 4

Mfirst = |P2int 100 if i =1

Noint ~ 1 otherwise

M) first

N2int
Noprime ™=
P Mint + 1

Nint + 2

pcr](“2prime0

pcrl("2primel)
Per2=
pcrl(anrimez>

pcrl(anrimej

Per = mi“(Pch)

Py = 6498.2psi
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Summary
Axisymmetric Buckling
Py = 814.7psi

Lobar Buckling

Pp = 2947.Tpsi

General Instability

Pep = 6498.2psi
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MIT 13A Professional Summer Submarine Design Trends

PROGRAM TO COMPUTE SUITABILITY OF SUBMARINE DESIGN PARAMETERS.
Ref: "Hull Material Trade Off Study", D Fox, Jan 94

Define input parameters:

ksi = 1000psi

Global Variable Inputs:

e =0.0in Eccentricity
Material:

Oy = 6550(si Yield strength

E = 3000Gksi Modulus of Elasticity
v=03 Poisson’s Ratio
Geometry:

R =8.4179n shell radius
D=2R shell diameter

L¢ = 1.366n frame spacing

Ls = 8.63Gn bulkhead spacing
tp = 0.0858n shell thickness

tg = 0.078n flange tickness
wr = 0.399n flange width

ty = 0.044n web thickness

hy = 0.4539n web height
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Compute areas:

t :
Re:=R + - Frame Radius
2

R¢ = 8.461in
Frame flange, web area:
Af=twr

Aw =ty-hy
A=Ar+ Ay Frame Area = Flange + Web

A= 0_051in2

PART 1 SHELL YIELDING

ty-t .
=P Area ratio
A+ twtp
B = 0.069
1
3 (I v2) 4
6 :=Lp| — Slenderness parameter:
2
(R-tp)
0 = 2.066

N o= Sosh (8) - cos(6) Deflection coefficient:
sinh(G) + sin(6)

N=y

2N | 025 g
= : JRetp Frame flexibility parameter:
Attty | (1 2)

-V

B =1.947
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= Frame deflection parameter:
1+B
I'=0.265
sinh(%)-cos(%) + cosh (%)sm(%)
Hyp = -2 Bending effect (mem):
sinh(e) + sin(e) v
Hyp = —0.835

) O R ) 6
0.5 sinh| — -cos| — | — cosh| — |-sin| —
e = _2‘( : 2} ' - - 2 2 Bending effect (bend):
1-v

sinh(e) + sin(e)
Hg = 0.557

Koo sinh(G) - sin(G)

= e Bending efffect near frame:
sinh(e) + sin(e) &
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Pal =

fye Cy

PO & 1 psi

P1 <~ 1000 psi
P, ¢ 2000 psi

delta « 5 psi

limit €~ 1 psi
conv & 1 psi
je o
while ;<20
for 1€0..2
-P.R
i
C dfso ——-—~[l +IHp + vH E’]
tp
-P.R

O fsi & -—t[l +T9HpM - v-Hgn]

—-PivR
Cxso & — 103+ Hp
tp
_pi.R
S xxsi ¢~ —— 105~ T-HE!
tp
"PxR 3 0.5
O pgfo ¢~ —— |1 -1+ v K
t 2
P 1-v

Usyf—
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Perl =

G SYM
O Sy ¢ may
G SYF

stressi “— OSY

test, « ify - Syl

tes

shel «
conv

test1
dav ¢«

conv

break if |stress —fy < limit

1

P[) &~ P1 if shel-dav >0

P2 «— P1 if shel-dav <0

819.181

)

Perit == Pcrlo' Ipsi

Perit = 819.2psi

2 2
GSY‘NI(—(Gl —0’1'(52+02)

B | =

2 2 2
O SYF ¢ (03 ~U3-c4+c4)
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PART 2 LOBAR BUCKLING

Windenberg Approx of Von Mises (1933)
Assumes n lobes = Pi*D/L
Collapse

pressure:

PoLB = 2947.7psi

PART 3 GENERAL INSTABILITY

Corrected Bryant Formula (1954) for better model test correlation

Pressure loading is:
P:=p-g-Dy-SFy;
P = 1786.13 Ipsi

Compute effective frame spacing:

Y =0473

Compute clear length:

Le=Lf -ty
np =051~y
n) = 0.363
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ny:=0.51+7y

ny = 0.607
Er 4 cosh (n1-9)2 - cos(n2~9)2
b 6 ' cosh(n1~9)-sinh(n1-9) cos(nz-e)-sin(nz-e)
+

nj ny
F; = 0.894 must be less than 1.00

F, is almost a linear decreasing function for pressures from 1 to 2000 psi with an average value
0f 0.90. This will be used in the following analysis as the pressur¢ is the unknown and therefore

the above equations cannot be directly used.

F} :=0.90

Lefr:= Lo Fy + ty Effective shell plate length:
Lefr = 1.234in

Theoretical critical lobe number values are:  i:=0..2

Actf = Lefr tp Effective plate area

Aegr = 0.106in’:

Circumferential Lobes

=1
1!
W

Longitudinal Lobes:
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hy + tf hy +t
S AT “Acff
Yna'= Frame-plate neutral axis (ref web centre+ toward flange):
Acff + Aw + Af

¥Yna = —0.12%in
Uses Parallel Axis Theorm: Icor=1+ Ad2

Moments of inertia for plate,flange,web:

3
Lo et
P72
3
twhy
VTR
. \Vf'tf3
=
tp + hy 2
Ipcor =1p + Aeff > + Yna

Lycor =l + Aw'()’na)2

2
tr+ hy
Icor==1If + Af‘( ) - )’na]

Tetr = Ipcor + Iweor + Ifcor Moment of Inertia corrected for neutral axis.

legr = 7.711x 107 Jin?

Determine Ry as radius to centroid of combined plate and stiffener:

The critical Elastic General Instability pressure is:

v w [ e

R

PcGIi =
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Min Pressure:

2.039% 10
PGl =| 8.546x 10° | Psi

6.379x 103

=
H
HOWN

PeGr= min(PcGI)

P.GI = 6378.9psi

Summary

Axisymmetric Buckling

Perit = 819.2psi
Lobar Buckling
PcLB = 2947.7psi
General Instability

Pc.Gg1 = 6378.9psi
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Analytic Solution
Defintions

ksi := 6.8947571 06Pa

E := 3000(ksi
R :=8.4179n
D:=2R

Oy = 65.5si
L:= 1.366n
Ly, ==8.63Gn
pi=.23
t:=0.0858n
Ring Stiffeners
t,, :=0.044n
H:=0.5319n
b:=1t,,

‘ bf := 0.399n
by:=bf —t,,
d:=0.078n
Lbnash =L —bf

Modulus of Elasticity

Radius of cylinder to centerline of shell
Diameter of cylinder

Yield strength
Length of supported cylinder
Distance between bulkheads

Poison's ratio for Fe/Steel

Shell thickness

thickness of web of ring stiffener

height of ring stiffener

faying width of stiffener (from P&S for I beam stiffener)
breadth of ring stiffener

breadth of ring stiffener minus the web thickness

ring stiffener flange thickness

distance from flange edges
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tw]_lz + b2‘d2
s—_

cp=. first centroidal height of ring stiffener
tyH+ byd

c1 =0.143in
cyi=H-cy second centroidal height of ring stiffener

Cy =0.389%n
hi=c, -d distance from centroid of ring stiffener to nearest edge of flange

h = 0.065in
R.:=R+ .5t+cy radius to centroid of ring stiffener

R = 8.85in
A= (‘W'H + bz‘d) cross-sectional area of ring stiffener

A= 0.051in”
L= (l)-(bfcl3 - bz-h3 + tw-cz3) moment of inertia of ring stiffener about its centroidal axis

3

1= 1.219% 10 i’

Aggri=Ap R effective area of stiffener eqn [24a] from P&S
R,
)
Aeff = 0.049in
Aeff . :
o= ratio of effective frame area to shell area eqn [62] P&S
Lt

o =0415

B:= b ratio of faying width to frame spacing eqn [62] P&S
L
B =0.032
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Combined PI

ate and Ring Stiffener

Ay =Lt area of effective plate
Agp=Ap+ A area of plate and ring stiffener
H :=H+t height of combined plate and ring stiffener
H, = 0.051ft
By:=L-t late length minus the web thickness
1 w p g
tw-HC2 + B+ byd-(2H, - d) _ . o
Cle=- neutral axis of combined plate and ring stiffener
twHe + Byt +d-b,
from outer fiber of plate (Ro)
€1c=0.174in
R.:=R - .5t+c), radius to centroidal axis of combined ring stiffener and shell
R, = 8.549in
1 3 3 3 3
I = ;-[L-clc =By(epe 1)+ bf(H, - ;) (bf - tw)(He - ¢ - d) ]

moment of inertia of combined plate and shell

.4
le=0.01m

a. Buckling of unreinforced shells

n:=1

-t

)

guess at number of waves around the circumference
( )4 ( ) 2
2" ( 2
5 R 2 1201 —n
n o+ —
- L —
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Given

n21

ny= Minimize(pur] ,n)

ny =13.812 n must be an integer
Nyint = round (n 1> 0)

Nint = 14

it ~ 1

O1int
Nprime=
P Nint + 1

nIint+2

purl(n 1 primeo

)
purl("lprimel)
Purl = purl(rl 1 primez)

)

purl(nlprim%
Pyr = min(pu”)

3 .
Pyr = 2.816x 10" psi
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b. Axisymmetric Buckling

Peab = [V < 0
limite 10psi
test « Opsi

conv « lpsi

je 0
while j<20
n « %\ﬁ_——?
Ny« %\/Ti
4
8«3l ;12 —\/;:
-t
; 4 cosh (n |-9)2 - cos(nz-B)Z
1 [} cosh(q] 9) sinh(r;r()) cos(qzrﬁ)sin(nz-ﬁ)
+
Ny M2
cosh(n]~9)-sin(n2-0) sinh(nl-e)-cos(nzo)
+
Fy & 12 N
cosh(r] |~9)'sinh(n 1'0) cos(r] 2~9)<sin(q2'9)
ny ' n2

cos(n5-0)sin{n 6) i cosh(n-6)-sinh(n -6)

Fre | n2 n
3 l_“Z cosh (ql-())-sinh(qr()) . COS(nz‘O)‘Sin(nz'O)

m n2
cosh (n I-O)~sin(n 249) sinh(n I-G)»cos(n zvﬁ)

Fq e 3 . e il
4 - pl cosh(n re)vsinh(n 1-9) . cos(n2~9)~sin(nz»0)

nj n2

denom?2 «

(
denom! « A |:F2"’F2F4 “ZN)( 09|)+F4 1- ll+ll).( 091 H
I-p 1_”2
)A[Fz p-Fyr 09’)
l-p
L
’ R

P m0—/—— :
’; + denom! - denom?2

break if ]pcl - lcsl| < limit

s 22 [

2E
test « p.y

Nlu

[+

jeg+l
Pc2

conv

outo Ll

oull<—j

out
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875.9
Pcab = 5

Paxiy = pcabo' Ipsi

Paxiy = 875.9psi

¢. Asymmetric Collapse (Lobar buckling)
Windenberg Approx of Von Mises (1933)
Assumes n lobes = Pi*D/L

Collapse pressure:

25
2.4213-(——)
D
L t ( 2)0‘75
=045 [—{\1-p
D D

3 .
PcLB = 2-948% 10" psi

PcLB=

d. General Instability of shells and rings

k::ﬂ
Ly
n:=1
Et 2 (n2-1)p1,
Pecim) = 5 -
R 2 ( 2)2 R3L
n-1+—\n"+2
Given
n21
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Ny = Minimiz{pcGI,n)

ny =3.957 n must be an integer
Noint = round (nz,O)

Ming = 4

Nint =~
2int

M2prime ™=
P Mint + 1

Mint + 2
pcG("ZprimeO)
pcGl("Zprime])
pcGl("Zprimez)
PcGl("Zprimej)

Pcgibryant = mi'(pcgi2)

Pegi2 ==

3 .
Pcgibryant = 6.498x 10" psi

Summary

Lobar Buckling

PeLB = 2947.7psi
Axisymmetric Buckling
Paxiy = 875.9psi
General Instability

pcgibryant = 64982p$1

Mint = 4
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Appendix D: Codes for Test Cylinder 2.c
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AMERICAN BUREAU OF SHIPPING

Rules for Building and Classing Underwater Vehicles, Systems, and Hyperbaric Facilities

Definitions
ksi := 100Qpsi
E := 3000(ksi
vi=03

Oy = 15700Qsi

Shell Parameters

L :=3.256n
L, :=115.533n
R :=18.882n
t:=0.33%n
R =R+ !

° 2

R, =19.051in

D, = 2R,
Ring Stiffeners
ty =0.12%n

depth :=2.314n

b:= ty
bf := 1.55%n
b2 = bf — t“,

Modulus of Elasticity
Poisson's Ratio

Yield strength

Distance between stiffeners

Distance between bulkheads

Mean radius of shell

Thickness of shell

Outer radius of shell

Outer Diameter of shell

thickness of web of ring stiffener

height of ring stiffener

faying width of stiffener (from P&S for I beam stiffener)
breadth of ring stiffener

breadth of ring stiffener minus the web thickness
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d:=0.305n ring stiffener flange thickness

Ly =L -ty Unsupported spacing between stiffeners
Lb = 3.12%n

Lo L)
L =3.256in

2 2
ty,-depth™ + by-d . . . .
cpi=5 first centroidal height of ring stiffener
ty,-depth + byd

¢} =0.558in
¢y :=depth —¢; second centroidal height of ring stiffener

¢y = 1.757in
hi=c;-d distance from centroid of ring stiffener to nearest edge of flange
R =R - .5t-c, radius to centroid of ring stiffener

Ry = 16.957in

A= (tw-depth + bz'd) cross-sectional area of ring stiffener

Ag = 0.729in”

L= (—;—)(bf’cf - bz-h3 + tw-c23) moment of inertia of ring stiffener about its centroidal axis
1= 0312in’

R¢:=R - .5t - depth Radius to tip of the stiffener
R = 16.398in
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Combined Plate and Ring Stiffener

i .5'\[ R-t
L.:=mi
¢ 0.75L

effective plate length

L, = 2.442in
Ap =Lt area of effective plate
Agp =Ap+ Ag area of plate and ring stiffener
H, = depth + t height of combined plate and ring stiffener
H, = 0.221ft
Bj:==L-t, plate length minus the web thickness

tyH + Bt + byd-(2:H, - d) _ . o
Clei=- neutral axis of combined plate and ring stiffener
tyH, + Bpt+db,

from outer fiber of plate (Rg)

C1c = 0.937in
R =R+ .5t-c, radius to centroidal axis of combined ring stiffener and shell
R, = 18.114in
1 3 3 3 3
I, = g-[bc]c ~Bp(c1c 1) + b (H - ¢ ) - (bf = ty,)-(H, - ¢1¢ - d) ]

moment of inertia of combined plate and shell
4
I, = 1.946in
General Equations

M=

-

M =1.291
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Q=10.83

N cosh(2-Q) - cos(2-Q)
" sinh(2-Q) + sin(2-Q)

N=10.797

_n. (sinh(Q)-cos(Q) + cosh(Q)-sin(Q))
- sinh(2-Q) + sin(2-Q)

G:

G=0.926

H e sinh(2Q) - sin(2-Q)
" sinh(2-Q) + sin(2Q)

H=10.435

Inter-Stiffener Strength (6.19.1)

1) Inter-stiffener strength equations
yield pressure at midbay and midplane of cylinder

This equates to axisymmetric buckling

A= AS-(ES-) Effective area of plate and stiffener (Internal stiffeners)

|
\
A= 0.811in2
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Py =4211.1psi

von Mises buckling pressure for a cylinder

This corresponds to Lobar buckling

P =
m 3
4 2
(o) | L g
R 2R
P, = 13410.8psi
P P
o= |[— if =<1
2 p
P p
P, 1-—2 | ir1<2<3
P, P,
P
=P, if -2 53
Py
P, = 3509.3psi
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maximum allowable working pressure for inter-stiffener strength

Paits = Pc-8

P, = 2807.4psi

2) longitudinal stress

limiting pressure corresponding to the longitudinal stress at stiffeners reaching yield

No direct correlation to major failure modes

2.6t 2
12
Py = — 1+[ 2) vH

1-v
P = 3566.1psi

maximum allowable working pressure for longitudinal stress

Pa]s = P] .67

P,s = 2389.2%si
b Overall Buckling Strength (6.19.5)

k::zt.—R-
L

Aq(n) = n2 -1
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Et Elg-Ay(n)
Ppi(n) = ?-A](n) + 3
R™-L
Given
nx2

ny:= Minimizr{pn] ,n)
ny=2 nmust be an integer

N9int -= round (n?_, 0)
Nint = 2
Mfirst ™= |M2in 100 if nyjp =1

Nying— | otherwise

Mo first

N2int
Mo orime ™=
P f2ing * |

"int + 2
pnl("2prime0)
pn]("Zprime])

Pn2 =
pnl("Zprimez)

pnl(anrimes

Pp = mi"(an)

P;, = 8642.1psi

Mfirst = |
1.768x 105
3
8.642x 10
P2~ 4
2.136x 10
3.995x 10°
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Summary
Axisymmetric Buckling
Py = 4211.1psi

Lobar Buckling

P = 13410.8psi

General Instability

p, = 8642.1psi

Mint = 2
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Germanischer Lloyd

1988 Edition

Chapter 2 - Submersibles
MPa = 106Pa

ksi = 103psi

General Definitions

E := 30000ksi Modulus of Elasticity

L, :=3.256n stiffener spacing

Ly:=115.532n length of cylinder between bulkheads or lines of support
s == 0.337%n thickness of shell

R :=18.882n radius to centerline of shell

v:=0.3 Poisson's Ratio

k := 157ksi minimum yield stress of material

Stiffener Dimensions

e¢:=0.305n flange thickness

dg:=0.7125n width of flange from web to edge of flange
by :=2-dg

d,, :=2.0lin Height of web

ey, =0.127%n web thickness

b:=¢, width of stiffener ring in contact with shell
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Aq:= ef'(ew +24d f) +e,d,  cross-sectional area of stiffener ring

Aj = 0.729in°

Hyip = dy + e

HStiff =2.315in

' 2 2
1 Swlsigr *byer

C] :
2 ewHgigr + byeg
¢y = 0.558in
¢ = Hgtifr — €1
Cy = 1.757in
h2 =cp—ef
h2 = 0.253in

1 3 3 3 . — . ~
1 = (g).[(ew +2d f)'cl - (z-d f)'hz +eyCy } Centroidal Moment of inertia of ring stiffener

Il = 0.3]2in4
e=cy+ .55 distance from stiffener centroid to center of shell

e =1.925in

Effective Stiffener and Shell

Letest =b + \/ 2-R-s

L

etest = 93.838mm

L.=1L

o etest i Letest <Ly Effective length of shell

Ll otherwise

L, = 3.256in
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. 4
I = 1.946in

Hgritfe = Higr + 5

HStiffC =2.652in

Moment of Inertia of combined plate and shell

Total height of stiffener and plate

dl =S
bs] =Le — €y
2 2
1 ew Hgiffe + b2'ef + bsl's'(z'Hstiffc - s)
¢ E

Clc = 1.715in

¢2¢ = Hygifre = €1c

¢ye = 0.937in

Ro =R+ 5s ~ Coe

R, = 18.114in
R2
RO
A= 0.792in2

epi=cp. + 58

e; = 1.105in

ew Hgtiffe + byep+ bsys

radius of stiffener ring centroid including effect of L

Modified area of stiffener ring
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2.4 Asymmetric Buckling (Lobar but not named this)

R
ay = <R
L
n:=2 initial guess
_.2 2
n2 s-(n2—1+kl)
— +1 +
2
A 12«R2»(1 ~v )
Bn](n) =
2
n -1+ 57\.1
E's-Byy(n)
n) =
Pp1(n) R
Given
n>2

ng 1= Minimize{pnl ,n)
ng =10.171 n must be an integer

ngint :=round (“g N 0)

10

Noint =

Do first = “gint‘loo if Ngint = 1

Ngint ~ 1 otherwise
n
gfirst 9
Noint 10
Doprime == Noprime =
fgint + | 1
+2 12

Ngint




Pn1 "gprimeo

Pn2 =

(Pepime,
pnl(ngprimel)
pn](“gprimez)

)

Pni ("gprime3

Per == mir(an)

Per = 12139.3psi

3.3.3 General Instability

L=1, Spacing between effective stiffeners

. 4
A

ny = Minimizt{pn]a,n)

n,=2 nmust be an integer
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Noyint = round (nz, 0)

N2int = 2
Nint ~ !
M2int
M2prime =
P Nint + 1
Nint + 2
pnla(n2primeo) 1768 x 100
Pnla("2primel) 9.702x ]03
Poy = Pgy = psi
g . g
Pnla("Zprlmez) 2.418x 10"
pn]a(“ZprimeJ 4.525% 107
Pg = mir(pgz)
Pg = 9702 .4psi

2.6 Symmetric Buckling (axisymmetric)
More Definitions

For Elastic-Plastic Region (Eqns are in the program)

E:=E Secant Modulus = Young's Modulus for elastic region
E :=E Tangent Modulus = Young's Modulus for elastic region
Vp =V Poisson’s Ratio, elastic-plastic; = Poisson's ratio in elastic

shape factor
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Csi=0al calculation factor for symmetric buckling

Cs = 1.659

2-52»E
’ ‘ Zi
Rz- 3\1-v

Past = 11567.346psi

critical pressure, elastic, calculation factor

=P
Past
C6 = —;‘ 1-G
1
C7 = ‘5 1+ G
Cy:=C5Cy
4 cosh (C8)2 - cos (Cg)z
Fi= C—S cosh (C8)~sinh(C8) cos(C9)-sin(C9)
+
Ce &
cosh (CS) sm( ) sinh(Cs)-cos (C9)
I N S
2= cosh (CS) smh(C8) cos (C9)-sin(C9)
Co ' G

cos(Cg)-sin{Cg)  cosh(Cg)-sinh(Cy)

b3 G Co
3 l_vz cosh(Cs) smh(Cg) cos(C9)~sin(C9)

Ce ¢
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cosh (Cg)-sin(C ) sinh(Cg)-cos (C9)

P32 G Cs
4= i - V2 cosh(Cg)-sinh(Cg) N cos(C9)-sin(C9)

Ce G

C
10 b b
—_—t 1-— Fl
0.91
C =
11 2
1-v
—p-R
60.3 P

]
Ox = %‘(5 + C10'C11'F4)
(5¢ = GO'<] — C10F2 + VC10C1]F4)
. 1
Sx17 % | 5~ CioCirFy
9
0x=—1.168x 10" Pa

o4t =00 (1 - C1gF2 = v-CigCr1Fa)

O¢ = -1.259x 109Pa

2 2
GiA— O‘X +0¢ —GX‘(Yd)

o; = 176.383ksi
0:=-K, 0y
G = 182.6ksi
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™
W
mla

€] = 6.087x 10 3

o= k-(.S + .2-tanh(5-£81 - 4))
k

o = 155380.1psi

€:= 5 0.8 + 0.2-atanh 5-9- -4
E k

€ =6.087x 107 °

[ossoxfmse- )]

ES = 1.743x lO”Pa

B - E.(. - tanh(s._f_.s - 4))

E.t = 1.067x IOIOPa

ES =

™ | =
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4»(1 - vpz)-Kl
Hyi=[ (1-2vp) - (2- Vp)'K0]
]

[ v) - (123,

Hy = [1 + H4-[H22 - 3‘(1 - sz)ﬂ

HyHyH,
Cyi=| 14—
v Hl

p

)
ES

H4 =

C3 = -‘083

2
Hy Hy

Cy=|1
2 H,

C, =032l

E=N

(XI::
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trial :=
T

trial = 0.413
iterate on m until trial <= trial2

m:= 1}

. ’m
trial2:= -;(m + 1)

trial2= 1

2
2
‘ ayly 1{ nm
Pm’=Paa Co T'm ¥ :1. oq-L
' 1L

Py = 4566.9psi

p = 4567psi iterate on p until py, equals p

Summary
Axisymmetric Buckling
Py, = 4566.9psi |
Lobar Buckling

Per = 12139.3psi

General Instability

Pg = 9702.4psi
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Society of Naval Architects and Marine Engineers

Submersible Vehicle Systems Design

ksi := 100(pst

Input Section

L¢:=3.256n
Ly, = 115.53n
R :=18.882n
t:=0.33%n
RO =R + .5t
Ry = 19.051in
E := 30000ksi
Oy = 157ksi
p:=03
Ring Stiffeners

ty = 0.12%n

depth :=2.315n

bf := 1.552n
d:=0.303n
b2 = bf - tW

Length between frames
Length between bulkheads

Radius of cylinder to centerline of shell
shell thickness

radius to outside of shell

modulus of elasticity

minimum yield stress of material

Poisson's ratio

thickness of web of ring stiffener

total height of ring stiffener
breadth of ring stiffener
ring stiffener flange thickness

breadth of ring stiffener minus the web thickness
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2 2
t-depth "+ byd

c;i=.5 first centroidal height of ring stiffener
! t,-depth + b--d & &
W 2

¢y =0.558in

cp:=depth - ¢ second centroidal height of ring stiffener
¢y = 1.757in

hi=c;-d distance from centroid of ring stiffener to nearest edge of flange
h =0.253in

R:=R-.5t-c, radius to centroid of ring stiffener
R.=16.957n

Api=(ty-depth + byd) cross-sectional area of ring stiffener
A= 0.729in”

1= (—;)(bf-cf - bz.h3 + tw-cz3 ) moment of inertia of ring stiffener about its centroidal axis
I=0312in"

Combined Plate and Ring Stiffener

Ap =Lt area of effective plate

Asp=Ap+ AL area of plate and ring stiffener

H_ :=depth +t height of combined plate and ring stiffener
By =Le-t,, plate length minus the web thickness
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tyHoo + Byt + byd(2H, - d) . . o
Clei=- neutral axis of combined plate and ring stiffener
tyHe + Byt +d-by

from outer fiber of plate (Ro)

C1c = 0.937in
R,:==R+.5t-cp, radius to centroidal axis of combined ring stiffener and shell
Rc = 18.114in

1 3 3 3 3
I, = g~[Lfc]C = By(cqe —t) + bf-(H, — 1) = (bof - t,)-(H, — ¢1 - d) }
moment of inertia of combined plate and shell

oy
Ie = 1.946in

a. Axisymmetric yielding

6 =1.659

_ cosh (9) - cos(B)
sinh(0) + sin(6)

N=0.797
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B =1.366

3-sinh(2)-cos(g) + cosh (g)-sin(
Hioo o 2 2 2

)

- sinh(e) + sin(e)
H=-0.818

t
)"R

py =
y -B
1+ H 0.85
1+

(9

Py = 3863.51psi

b. lobar buckling

L 2
_f__. - 045 L
L L 2R 2:R A

Py = 1.341x ]04psi

¢. General Instability

m-R
mi=—
L,

n:=1
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m

E-t

n) = —-
2 m (2 2)
n —]+7 An +m

Given
n21
ny:= Minimizﬁ(pcrl ,n)

n, = 1.654 n must be an integer

Noint = round (“2’ O)
Nint = 2

Mfirst = |M2int 100 if n55 =1

N9int ~ 1 otherwise

N first

M2int
Noprime =
P Nint + 1

N2int + 2
pcrl("ZprimeO)
pcrl(“Zprimel)

Per2 =
pcrl(“Zprimez)

pcrl("Zprim%

Per = mi"(Pcrz)

Py = 8642.1psi
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Summary
Axisymmetric Buckling
Py = 3863.5psi

Lobar Buckling

pp = 13410.8psi

General Instability

Pcr = 8642.1psi
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MIT 13A Professional Summer Submarine Design Trends

PROGRAM TO COMPUTE SUITABILITY OF SUBMARINE DESIGN PARAMETERS.
Ref: "Hull Material Trade Off Study”, D Fox, Jan 94

Define input parameters:

ksi = 100Qpsi

Global Variable Inputs:

e=0.0in Eccentricity
Material:

oy = 157000si Yield Strength

E = 30000ksi Modulus of Elasiticity
v=03 Poisson’s Ratio
Geometry:

R = 18.882n shell radius
D=2R shell diameter

Lf = 3.256n frame spacing
Lg=115.533n bulkhead spacing
tp = 0.337%n shell thickness

tr = 0.305n flange tickness
wr = 1.552n flange width

ty = 0.127n web thickness

hy =2.0lin web height
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Compute areas:

t .
Ry:=R-—- Frame Radius
2

R = 18.713in
Frame flange, web area:
Af=tfwyp

Ay =ty hy

A=Ar+ Ay Frame Area = Flange + Web

A = 0.729in>

PART 1 SHELL YIELDING

ty-t X
=P Area ratio
A+ tytp
B = 0.055
1
3 (] vz) !
0 :=Lg 5 Slenderness parameter:
(Rtp)
0 =1.659

_ cosh (8) - cos(B)

N: Deflection coefficient:
sinh(B) + sin(G)
2N | 0.25 5
B = : JRtp Frame flexibility parameter:
A+ tytp ( 2)
3\l-v
B = 1.366
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Frame deflection parameter:

ff)o(2)- (2}

Hy =2

Bending effect (mem):
sinh(e) + sin(G)

Hyy = -0.926

sinh(e) + sin(e)

0.5 sinh| — |-cos| — | — cosh| — |sin| —
Hg = —2.[ & 2) . 2 2 2 2 Bending effect (bend):
1-v

Hg = 0.391

.= sinh(8) - sin(0)
" sinh(8) + sin(0)

Pol =

Bending efffect near frame:

fye—cy

Poe— 1 pst

P1 < 1000 psi
P2 <« 5000 psi

delta ¢ 5 psi
limit - 1 psi
conv ¢~ 1 psi
je0
while j< 200
for ie0..2
_Pi'R . '
S fgso ?[I +TtHpm+ vH E']

-P.R
i ; .
Oggei ¢~ —— 1+ iHp - v-HE!
dgsi tp [ M EJ
—Pi~R
O w0 & 05+ T"HE)
tp '
-P;R
O yxsi ¢ —— (0.5 -T-HEi
tp

)

~Pi~R[ [ 3 \05
G pifo ¢ - 1-T- 1+v~[ ) Kj|:|
P 1-v
-Pi-R[ [ 5 05
G¢¢ﬁ(——t——- 1-T l—v»( 2] ‘K
P 1-vw




tp

—Pi»R 3 05
Oy & —— |05+ T K
tp

-P.R 3 \05
O o & ——- 0_5-r-[ ] X

O pdso
Uwi
O xxso
G xxsi
O difo
C i
O xdo

Usy(——

S xdi

[+ (—o‘syo
cxz(—csy2
03<—csy5

c4<—csy7

(SRR

2
USYM“(UI —Ul~02+022)
1

2 2 2
USYF(—(U3 —03-04+U4)

O SYM
O Sy ¢ may
[("SYF ]]

stressi €« o35y

testi(- 'fy -Gsy!

tes
shel «

conv

testl

dav &
conv

break if stressl - fy < limit

PUe—-P1 if shel-dav >0
P2<—P1 if shel-dav <0
|P2—P0n

0+ )

je g+ 1

Pl<—-P

P

-
ou'n conv

out) & j-1

out
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3.712x% ]03
Pcrl =
15

Perit -== Pcrlo' 1psi

Perit = 3712psi

PART 2 LOBAR BUCKLING
Windenberg Approx of Von Mises (1933)
Assumes n lobes = Pi*D/L

Collapse pressure:

L2
242E| 2
D

(E - 045 —tg](l - v2)0-75

D D

PeLp =
P. g = 13410.8psi

PART 3 GENERAL INSTABILITY
Corrected Bryant Formula (1954) for better model test correlation
Pressure loading is:

P :=p-g-Dy-SFyi

P=1.674x 103 psi

Compute effective frame spacing:

Lo (EJZ_JZ(T_TZ)

2E{ tp

y =0.145
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Compute clear length:

Lei=Lp -ty
np=05y1-y
ny = 0.462
Web thickness:
ny =051+
n = 0.535
tw = 0.127in
ot | conono) - oo
8 | cosh(n;-8)-sinh(n;-6) X cos(np-6)-sin(ny-0)

nj ny
Fj = 0.959 must be less than 1.00

F1 is almost a linear decreasing function for pressures from 1 to 10000 psi with an average value

0f 0.96. This will be used in the following analysis as the pressure is the unknown and therefore
the above equations cannot be directly used.

F;:=0.96
Effective shell plate length:
Leff = Lo Fy + ty
Lefr = 3.131in
Theoretical critical lobe number values are: j:=0. 2

Aefr:=Lerrt,  Effective plate area:

Aeff = l.055in2
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Circumferential Lobes
2

n:=1|3
4

Longitudinal Lobes:

R
m:=mn—
L
m=0.513
hy + tf hy + tp
( 5 Af = 5 “Aeff
Yia = Frame-plate neutral axis (ref web centre+ toward flange):
Aeff + Aw + Af
Yna = —0.387in

Uses Parallel Axis Theorm: Icor =1+ Ad2

Moments of inertia for plate,flange, web:

3
L o Leff'tp
P
3
I tw-hy
W 12
3
. wete
=

2
tp + by
Ipcor = Ip + Aefr > + Yna

Iweor =Iw + Aw'(yna)2

2
tr+ hy
Ifcor=1I¢ + Af’( > - Yna)
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Total:
etf = Ipcor + weor + Ifcor Moment of Inertia corrected for neutral axis.

lefr=1 .92in4

The critical Elastic General Instability pressure is:

Etp m' [("i)z ~ IJ'E' Lefr

Pegr = —- +
(:GIi R 5

Min Pressure:

8.536x 10° 2
PG =] 2.107x 10° |psi n:=|3
4

3.942x 104
PeG1 = min(PeG1)
P.G1 = 8535.8psi
ngj:=2
Summary
Axisymmetric Buckling
Perit = 3712psi
Lobar Buckling
P.Lp = 13410.8psi
General Instability
PcG1 = 8535.8psi

ngj=2
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Analytic Solution
Definitions

ksi = 6.894757106Pa

E := 3000(si Modulus of Elasticity

R :=18.882n Radius of cylinder to centerline of shell

D:=2R Diameter of cylinder

Gy = 15%ksi Yield strength

L:=3.256n Length of supported cylinder

L, :=115.53dn Distance between bulkheads

ui=.3 Poison's ratio for Fe/Steel

t:=0.337%n Shell thickness

Ring Stiffeners

t,, =0.12%n thickness of web of ring stiffener

H:=2315n height of ring stiffener

b=t faying width of stiffener (from P&S for I beam stiffener)
bf := 1.552n breadth of ring stiffener

by:=bf -t breadth of ring stiffener minus the web thickness
d = 0.305n ring stiffener flange thickness

Lynash =L —bf distance from flange edges
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‘w‘”2 + b2'd2 . . . .

cp=.5 m first centroidal height of ring stlffener

¢y =0.558in

cy=H-¢ second centroidal height of ring stiffener
¢y = 1.757in

hi=c;-d distance from centroid of ring stiffener to nearest edge of flange
h =0.253in

R.:=R - 5t-c, radius to centroid of ring stiffener
R = 16.957in

Api=(tyH + byd) cross-sectional area of ring stiffener
A, = 0.729in

L= (%)(bf-cl“" ~ b2-h3 + tw-c23) moment of inertia of ring stiffener about its centroidal axis
1= 0.312in"

Aegri= Ar-[%) effective area of stiffener eqn [24@] from P&S

.2
Aeff= 0.811in

o= i;ff ratio of effective frame area to shell area eqn [62] P&S
o =0.739

B = % ratio of faying width to frame spacing eqn [62] P&S
B =0.039
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Combined Plate and Ring Stiffener

Ap =Lt area of effective plate

Agy =Ap+ A area of plate and ring stiffener

Ho=H+1 height of combined plate and ring stiffener
H. = 0.221ft

By=L-t, plate length minus the web thickness

tyH” + Byt + byd:(2H, - d) _ ' o
Clci=5 neutral axis of combined plate and ring stiffener
ty He + Byt +d-by

from outer fiber of plate (Ry)

Clc= 0.937in
R,:=R + .5t —c}, radius to centroidal axis of combined ring stiffener and shell
R, = 18.114in

1 3 3 3 3
I = g-[L-clc =By(cre—t) + bf(H, - ¢ )" = (bf -t )-(H, — ¢y - d) ]
moment of inertia of combined plate and shell

4
Ie = 1.946in

a. Buckling of unreinforced shells
von Mises bucking pressure:

n:=1 guess at number of waves around the circumference
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Given

nzl

ny:= Minimizc{pur] ,n)

ny = 10.14 n must be an integer
Ny;pt = round (nl,O)

Nijne =10

Nint = |

D int

M brime=
prime Mg + 1

Dint + 2
purl("]primeo)
purl(”lprimel)

Pur1 =
purl("lprimez)

purl("lprimes

Pyr= mi"(purl)

4
Pyr = 1.214x 10 psi
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b. Axisymmetric Buckling

Peab = |7 <0
limit< 10psi
test < Opsi

conv < lpsi

je 0
while j <20
Ny« % -y
Ny« %\/T:_Y
4
6 « 31 - ),12 —\[%
cosh (r] 1-6)2 ~ cos (n 246)2
Fre g cosh (n -0)-sinh(n ~9) cos(n ~9)-sin(r| ~9)
1 1 . 2 2
ni Ny
cosh (n ]-9)~sin(r|2‘9) sinh(n l-B}cos (n 2~9)
2 i n1
2 om0 sinn(n0) cos(ny)sinn0)
i ' n2

cos (nz-e)sin(nz»e) cosh (n ]~6)-sinh(n l~e)

e ’ 3 2 n]
3 l_pZ cosh(nre)sinh(nl-e) . cos(nIO)Asin(nz-e)

n 2
cosh (n 1-9)~sin(n 2~8) sinh (n l~9)-cos (r] 2~9)

_— ’ 3 n2 ni
4 ‘_“2 cosh(nl-e)Asinh(nl»e) cos(nz-ﬁ)-sin(nz-e)

(-4)

n 2
(_a+ﬁ+(1—[5)~Fl

202 0.91 2 2 0.91
denoml « A™{ Fy” + FyFy(1 - 2:p): 1+ F ~(1— B+ R ) ,
I-n 1-u
3 0.91
denom2 « (EJA Fy—pFy
1- pz
6y‘( )
3
Z + denoml — denom?

break if |p y  test| < limit

v 2[R

2E

A

]

= |-

P2 <

test < py
je i+t
P2

conv

oulo <«

out]<—j

out
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4080.3
Pcab = 9

Paxiy = Pcab Ipsi

Paxiy = 4080.3psi

¢. Asymmetric Collapse (Lobar buckling)
Windenberg Approx of Von Mises (1933)
Assumes n lobes = Pi*D/L

Collapse pressure:

. 2.5
2.42-Ev(—)
D
0.75
L 0.45 A ~(1 — “2)
D D

PcLB~

d. General Instability of shells and rings

k:zﬂ

Ly
n:=1

2

- Et . \ (n - l)-Ele

PeGin) = —
R s 12 (2 2)2 RB'L
n -1+ —[\n"+A
2

Given
n21
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ny = Minimize{pCGI, n)

n, = 1.654 n must be an integer

Noint = round ("27 O)
Nint = 2

N2int ~ 1
N2int
h . =
2prime*
P Nipt + 1

Noint + 2

p cGI(n2prlmeO

)
pcGl(anrlme])
)
)

P cGI(annme2

pcGI(anrlme;
Pegibryant == mir("cgi2)

3 .
Pcgibryant = 8.642x 10 psi

Summary

Lobar Buckling

P B = 13410.8psi
Axisymmetric Buckling
Paxiy = 4080.3psi

General Instability

Pcgibryant = 8642.1psi
Mint =2
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